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Abstract

The general anesthetic etomidate, which acts through c-aminobutyric acid type A (GABAA) receptors, impairs the formation of
new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using
a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) b2-N265M mutation, we tested the roles of
receptors that incorporate GABAA receptor b2 versus b3 subunits to suppression of long-term potentiation (LTP), a cellular model
of learning and memory. We found that brain slices from b2-N265M mice resisted etomidate suppression of LTP, indicating that
the b2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hip-
pocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, b2
subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line
of b3-N265M mice, we also examined the contributions of b2- versus b3-GABAARs to GABAA,slow dendritic inhibition, because
dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting sup-
pression of population activity through feedforward and feedback inhibition. We found that both b2- and b3-GABAARs contribute
to GABAA,slow inhibition and that both b2- and b3-GABAARs contribute to feedback inhibition, whereas only b3-GABAARs contrib-
ute to feedforward inhibition. We conclude that modulation of b2-GABAARs is essential to etomidate suppression of LTP.
Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback
inhibition.

NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains
unknown. Here, using a hippocampal brain slice model, we show that b2-GABAARs are essential to this effect. We also show
that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neu-
rons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how in-
hibitory circuits control learning and memory.

etomidate; GABAA receptors; general anesthesia; learning and memory

INTRODUCTION

Many drugs, including benzodiazepines, barbiturates, neu-
rosteroids, and most general anesthetics, act as positive allo-
steric modulators of c-aminobutyric acid type A receptors
(GABAARs) (1, 2). They produce a wide variety of effects, from
anxiolysis, sedation, andmemory impairment at low doses, to

hypnosis, respiratory depression, and surgical immobility at
higher doses. The spectrum of effects produced by a given
drug is determined by both the dose that is administered and
the subtype of GABAAR that is targeted (3–5). Elucidating
the mechanisms by which anesthetics produce their
desired effects, and undesired side-effects, remains an im-
portant research goal.
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GABAARs are pentameric ligand-gated ion channels that
collectively comprise the major class of inhibitory receptors
in the mammalian brain (6). Each receptor is formed by five
structurally similar transmembrane subunits that surround
a central chloride-permeable ion pore. Each subunit exists in
multiple isoforms (a1–6, b1–3, c1–3, d, ɛ, h, and r1–3), with the
majority of GABAARs composed of two a, two b, and one c
subunit (7). Although there are millions of possible subunit
combinations, it has been estimated that only �25 different
subunit combinations are present in the mammalian brain
(8). The different receptor subtypes display distinct physio-
logical properties and pharmacological sensitivities and
their expression levels depend on brain region, developmen-
tal stage, cell type, and even subcellular location (9).

To link drug effects at the behavioral level to modulation
of specific GABAAR subtypes, one especially useful approach
has been to study mice carrying mutations that make them
insensitive to specific drugs. In particular, single point muta-
tions in the transmembrane domains of b-subunits have
been found that render those receptors insensitive to the
general anesthetics etomidate and propofol (b2-N265S and
b3-N265M) (10, 11) and partially insensitive to the inhaled
agent isoflurane (12). Studies of mice carrying those muta-
tions have been used to link specific b subunits to specific
anesthetic endpoints—b3 to loss of righting reflex, respira-
tory depression, and loss of the hindlimb-withdrawal reflex
(13, 14), and b2 to sedation and ataxia (15).

To test the contributions of b2- versus b3-GABAARs to an-
esthetic-induced amnesia, we previously studied mice carry-
ing the b3-N265M mutation (16). We found that they
remained sensitive to the amnestic effect of etomidate and
to suppression of long-term potentiation (LTP), a cellular
model of learning and memory (17). This was an unexpected
result because b3-GABAARs are expressed at much higher
levels than b2-GABAARs in the hippocampus (18) and in a
distribution pattern that matches that of a5 subunits (18, 19),
which are essential targets for etomidate suppression of LTP
and memory (20–22). There is also molecular evidence that
a5 subunits preferentially associate with b3 subunits (23) and
electrophysiological and pharmacological evidence that hip-
pocampal pyramidal neurons predominantly express a5b3c2
receptors (24, 25). However, as etomidate modulates only b2-
or b3-GABAARs (10), our experiments with b3-N265M mice
thus showed that etomidate modulation of b2-GABAARs
alone is sufficient for its amnestic effect.

In the present study, we had two principal aims: 1) to test
whether the modulation of b2-GABAARs is necessary for eto-
midate suppression of LTP, using a newly created line of
mice carrying the b2-N265Mmutation; and 2) to test whether
b2-GABAARs contribute to long-lasting feedback or feedfor-
ward inhibition of pyramidal neurons, as recent reports have
shown that long-lasting dendritic inhibition is particularly
effective in controlling burst-induced NMDA-mediated
depolarization, synaptic integration, and LTP (26, 27), and
feedback and feedforward inhibition represent the canonical
motifs by which inhibitory circuits control pyramidal cell ex-
citation (28). We found that mice carrying the b2-N265M
mutation were indeed resistant to LTP suppression by etomi-
date, confirming that modulation of b2-GABAAR is essential
for this anesthetic action. In whole cell recordings, we found
that selective modulation of b2-GABAARs slowed the

decay of electrically evoked GABAA,slow inhibitory synapses,
though to a substantially smaller degree than in wild-type
(WT) mice. Using field potential recordings, we found that
b2-GABAARs are engaged in long-lasting feedback but not
feedforward inhibition, whereas b3-GABAARs are engaged in
both. These results thus support an essential role for b2-
GABAARs in suppression of LTP by etomidate. They further
demonstrate that b2-GABAARs do contribute in part to long-
lasting dendritic feedback inhibition, so modulation of this
circuit might be instrumental in LTP suppression by etomi-
date. By the same token, we cannot exclude the possibility
that etomidate exerts its amnestic effects through interneur-
ons (16, 29), which in the hippocampus preferentially
express b2-GABAARs (18, 30, 31).

METHODS
All experiments were carried out with the approval of

the Institutional Animal Care and Use Committees at the
University of Wisconsin-Madison and the University of
Pittsburgh.

Experimental Mice

b2(N265M) mice were generated on a C57BL/6J back-
ground using CRISPR-Cas9 technology with procedures
described previously (32). Briefly, an in vitro transcribed
gRNA with a target sequence (CCGGAGGTGGGTGTTGA-
TTG) near the mutation site in Exon 9 of b2 was injected into
C57BL/6J zygotes along with Cas9 mRNA and a 120-nucleo-
tide single stranded oligonucleotide repair template (IDT
DNA, Coralville, IA). A knockin founder was screened with
PCR and Sanger sequencing for mutations at the top 15 off-
target sites predicted in silico and identified mutations were
eliminated from the pedigree following breeding with WT
C57BL/6J mice. Experimental mice consisted of male and
female homozygous WT and b2(N265M) littermates that
were produced by heterozygous parents.

b3(N265M) mice were produced as previously described
(14). Briefly, the b3(N265M) mutation was introduced by ho-
mologous recombination into a R1 (129/SvJ � 129/Sv) embry-
onic stem cell, and chimeric mice resulting from a single ES
cell clone were bred in the 129/SvJ background. Four breed-
ing pairs of mice heterozygous for the b3(N265M) mutation
were obtained from University of Zurich (Dr. Uwe Rudolph).
Experimental mice consisted of male and female homozy-
gous WT and b3(N265M) littermates that were produced by
heterozygous parents.

All mice were housed in the animal care facility under
12-h cycles of light and dark and had continuous access to
standardmouse chow and water.

Genotyping

Tail samples were acquired from each mouse and geno-
typed either in-house using traditional, gel-based PCRmeth-
ods, or sent to Transnetyx (Cordova, TN) which uses a
TaqMan-based assay to collect real-time PCR data. For in-
house PCR, primers were purchased from IDT (Integrated
DNA Technologies, Coralville, IA). The primers used for in-
house PCR were as follows: b2, 50-AGGAAGGGTCACTAG-
GCAGA-30 and 50-TTGACATCCAGGCGCATCTT-30; b3, 50-GT-
TCAGCTTCCATTCTCACTG-30 and 50-GTTCAGCTTCCATT-
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CTCACTG-30. For the b2 line, the amplified DNA was
digested using PagI. Samples sent to Transnetyx and geno-
typed using real time PCR amplification used the following
primer sequences: b2, 50-TTTTTTCAGGAATTACAACTGTC-
CTAACAATG-30 and 50-GCACCCCATTAGGTACATGTCAAT-
30; b3, 50-CCACCGTGCTCACCATGA-30 and 50-TCGATGGC-
TTTGACATAGGGAATTT-30.

Brain Slice Electrophysiology

Brain slice preparation: LTP studies.
Coronal hippocampal slices (400mm) were prepared from
60–90day old mice. Mice were deeply anesthetized using
isoflurane and then decapitated. The brain was quickly
extracted from the skull and immediately placed in ice-cold
“cutting artificial cerebrospinal fluid” (cutting aCSF) satu-
rated with carbogen (95% O2/5% CO2). The cerebellum was
cut off at an �15� caudo-rostral angle to produce an “off-
coronal” cutting plane for slicing. The posterior end of the
brain was glued to a metal stage and mounted onto the stage
of a vibratome (Model 7000 smz2, Campden Instruments,
Loughborough, UK) filled with ice-cold cutting aCSF. Brain
slices were transferred into a submerged incubation cham-
ber of elevated temperature (33�C) for 30min, then for an
additional 60min at room temperature before being trans-
ferred into recording chambers for electrophysiology. Both
recovery and recording solutions contained recording aCSF.
Cutting aCSF consisted of (in mM): 124 NaCl, 3 KCl, 1.25
NaH2PO4, 25 NaHCO3, 10 glucose, 1 sodium ascorbate, 3
kynurenic acid, 3.6 MgSO4, and 0.8 CaCl2. Recording aCSF
consisted of (in mM): 124 NaCl, 3 KCl, 1.25 NaH2PO4, 25
NaHCO3, 15 glucose, 0.8 sodium ascorbate, 1.3 MgSO4, and
2.5 CaCl2. All solutions were buffered to pH 7.3–7.4 when sat-
urated with carbogen and had a recorded osmolality
between 294–297 osmol/kgH2O.

Brain slice preparation: whole cell IPSCs and feedback/
feedforward inhibition.
Coronal hippocampal slices (400mm) were prepared from 15–
42day [whole cell inhibitory postsynaptic currents (IPSCs)] or
30–180day old mice (FB/FF inhibition). Mice were deeply
anesthetized using 3% isoflurane and 70–100mg/kg ketamine
then decapitated. The brain was quickly extracted from the
skull and immediately placed in ice-cold cutting aCSF satu-
rated with carbogen (95% O2/5% CO2). The cerebellum was cut
off at an �15� caudo-rostral angle to produce an “off-coronal”
cutting plane for slicing. The posterior end of the brain was
glued to a metal stage and mounted onto the stage of a vibra-
tome (Leica VT 1000S, Leica Microsystems Nussloch GmbH,
Nussloch, Germany) filled with ice-cold cutting aCSF. Brain sli-
ces were transferred into a submerged incubation chamber at
35�C (IPSC recordings) or room temperature (FB/FF inhibition),
where they remained for at least 60min before being trans-
ferred into recording chambers for electrophysiology. Cutting
aCSF consisted of (in mM): 127 NaCl, 1.88 KCl, 1.21 KH2PO4, 26
NaHCO3, 10 glucose, 2.5 sodium ascorbate, 5 kynurenic acid,
1.44MgSO4, 11MgCl2, and 2.17 CaCl2. Recording aCSFwas iden-
tical to cutting aCSF, except that ascorbic acid, kynurenic acid
andMgCl2 were omitted. All solutions were buffered to pH 7.3–
7.4 when saturated with carbogen and had a recorded osmolal-
ity between 290–300mosmol/kgH2O.

LTP studies.
Brain slices were place in a submersion-style recording cham-
ber perfused with carbogen-saturated aCSF flowing at a rate
of 3.0mL/min. The temperature inside the chamber was
maintained at 30�C using a TC-344C Automatic Temperature
Controller (Warner Instruments, Hamden, CT). Slices were
placed upon a custom-fabricated elevated mesh netting to
allow for superfusion of both surfaces. For slice stability, plati-
num harps with thin nylon strings attached gently anchored
the slices onto the netting. Recording pipettes (3–5MX
when filled with 1M NaCl) were made of fire-polished bor-
osilicate glass (OD 1.5mm, ID 0.86mm) pulled using a
Model P-1000 micropipette puller (Sutter Instruments,
Novato, CA). Tungsten bipolar electrodes were used for
stimulation. Recording pipettes were inserted 80–120 mm
into the CA1 stratum radiatum (SR) to measure field exci-
tatory postsynaptic potentials (fEPSPs), and stimulating
electrodes placed in SR �1mm from the recording elec-
trode to evoke Schaffer collateral inputs to CA1 pyramidal
cells. Input-output profiles were used to determine the
stimulation intensity for the half-maximum fEPSP slope
before baseline. All stimuli were biphasic and of 200-ms
duration, at the intensity producing the 50% maximum
fEPSP slope. Test stimuli were given at a rate of 0.05Hz
until a 30-min stable baseline was achieved. The h burst
stimulation (TBS) paradigm used to elicit LTP consisted of
three trains of stimuli separated by 20 s, with each train
consisting of 10 bursts of 4 pulses at 100Hz, repeated every
200ms. Recordings were continued for 60min following
TBS. To assure that etomidate was present at an equilib-
rium concentration, etomidate was added to the recovery
solution as well as recording aCSF.

Stimulation and recording were controlled by WinLTP
software (v2.3, Bristol University). Data were amplified
�1,000 and filtered between 0.1Hz and 20kHz using a
Microelectrode AC Amplifier (Model 1800, A-M Systems,
Everett, WA) and digitized at 40kHz (National Instruments,
Austin, TX). Stimulus timing outputs from WinLTP drove
constant-current stimulus isolator units (WPI, Sarasota, FL; or
STG 4004,MCS, Reutlingin, Germany).

Patch clamp recordings of IPSCs in CA1 hippocampal
neurons.
Experiments were performed on the stage of an uprightmicro-
scope (BX50WI, Olympus, Melville, NY) equipped with a long-
working-distance water-immersion objective (Achroplan �40;
0.75 numerical aperture; Carl Zeiss, Thornwood, NY) and dif-
ferential interference contrast (Nomarski) optics. Brain slices
were superfused at a rate of 2.8 mL/min with carbogen-satu-
rated aCSF at room temperature (22�C–24�C). The microscope
and recording pipette positions were controlled by an inte-
grated motorized system (Luigs & Neumann, Ratingen,
Germany). Recording pipettes were fabricated from borosili-
cate glass (1.7mm OD, 1.1mm ID; KG-33, Garner Glass,
Claremont, CA) using a two-stage puller (Flaming-Brown
model P-87, Sutter Instruments, Novato, CA). Pipettes were
covered with Sylgard 184 (Dow Corning Company, Midland,
MI) to reduce electrode capacitance and noise. Fire-polished
open tip resistances were 2–4MX when filled with recording
solution consisting of (in mM): CsCl 140, Na-HEPES 10, EGTA
10, MgATP 2, QX-314 5, pH 7.3. Putative pyramidal cells in
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stratum pyramidale (SP) of CA1 were visualized using a video
camera (VE-1000; DAGE MTI, Michigan City, IN) equipped
with an infrared bandpass filter (775±75nm). Access resistan-
ces were 10–20 mX and were then compensated 60%–80%.
Cells were held at �60 mV. Evoked and spontaneous GABAA

inhibitory postsynaptic currents (IPSCs) were pharmacologi-
cally isolated by bath application of 20mM CNQX and 40mM
D-APV, to block AMPA/KA and NMDA receptor mediated cur-
rents and by the inclusion of CsCl andQX-314 in the patch pip-
ette to block potassium currents and GABAB receptors.
GABAA,slow currents were evoked by applying stimuli to the
border of stratum radiatum (SR) and stratum lacunosum-
moleculare (SLM) using a patch electrode filled with aCSF and
a constant-current stimulus isolator (Model A365D, World
Precision Instruments, Sarasota, FL). For SR/SLM stimuli, a
maximum stimulation rate of 0.05Hz was used to minimize
the previously observed rundown of GABAA,slow over time (33).
The position of the stimulating electrode and its stimulus in-
tensity (50–300 mA) were adjusted until an isolated GABAA,slow

event could be reliably elicited. All data were collected in volt-
age clamp mode using an Axopatch 200B patch clamp ampli-
fier (Molecular Devices, San Jose, CA) and pClamp software
(Molecular Devices). Data were filtered at 5kHz, digitized at
10–20kHz (Digidata 1200, Molecular Devices) and stored on
computer hard disk for off-line analysis.

Extracellular recordings of feedback and feedforward
inhibition.
Experiments were performed on the stage of an upright
microscope (BX50WI, Olympus, Melville, NY) equipped with
a �10, 0.25NA objective, using bright-field optics. Brain sli-
ces were superfused a rate of 2.8 mL/min with carbogen-sat-
urated ACSF at room temperature (22�C–24�C). The same
pipettes used for whole cell recording of IPSCs were used for
field potential recordings. Open tip resistances were 2–4MX
when filled with recording aCSF. The recording electrode
was placed in the SP layer of the CA1 region to record the
population spike (PS) superimposed on the (passively
sourced) fEPSP. Bipolar stimulating electrodes were fabri-
cated from 100kX tungsten recording electrodes (World
Precision Instruments, Sarasota, FL). To study feedforward
inhibition, we used a “Paired-Pulse Depression” (PPD) para-
digm. A single stimulation electrode was placed in SR to
evoke orthodromic population responses in CA1 neurons
via activation of Schaffer collateral input. To study feed-
back inhibition we used a “Conditioned Depression” (CD)
paradigm (34). In addition to the SR stimulating elec-
trode, a second stimulating electrodes was placed in the
alveus (ALV) to activate pyramidal cells antidromically,
and thereby activate inhibitory interneurons targeted by
pyramidal neurons (35, 36). Current pulses 0.1ms in dura-
tion were delivered via constant current stimulus isola-
tors (Model A365D, World Precision Instruments,
Sarasota, FL) at a stimulus rate of 0.05Hz. They were
adjusted such that ALV stimulation (200–800 mA) elicited
supramaximal and SR stimulation (60–250 mA) elicited
half-maximal responses. Both PPD and CD responses
were tested at interpulse intervals of 5-2000ms in the
presence and absence of etomidate (1 mM).

All recordings were obtained in current clamp mode
using an Axopatch 200B patch clamp amplifier (Molecular

Devices) and pClamp software (Molecular Devices). Data
were filtered at 5 kHz, digitized at 10–20 kHz (Digidata
1200, Molecular Devices) and stored on computer hard
disk for off-line analysis.

Chemicals and Drugs

Unless stated otherwise, all chemicals were obtained from
Sigma-RBI (St. Louis, MO). Ultrapure water was purified with a
Millipore Milli-Q system (Billerica, MA) and used to prepare all
solutions. Isoflurane was purchased from Abbott Laboratories
(Abbott Park, IL) and Ketamine HCl from Lloyd Laboratories
(Shenandoah, IA). Etomidate as a 0.2% (wt/vol) solution dis-
solved in propylene glycol (35% vol/vol) was obtained from
Bedford Laboratories (Bedford, OH). This formulation was
diluted 8,200-fold in aCSF to produce our experimental solu-
tions for whole cell patch clamp and extracellular population
spike recordings. We did not include propylene glycol in aCSF
control solutions; we would note, however, that concentra-
tions more than 100-fold greater were found in other hippo-
campal brain slice experiments not to influence population
spikes (37). For LTP experiments, powdered etomidate was
solubilized in DMSO to make a 50mM stock solution. We did
not include DMSO in our control aCSF solutions. We would
note, however, that this solution was diluted 105-fold in aCSF,
so that the DMSO concentration in our experimental etomi-
date-containing aCSF was tenfold lower than a 1:10,000 dilu-
tion, a commonly used standard for brain slice recordings,
and 100-fold lower than 0.1%DMSO, whichwas found in other
experiments not to influence LTP (38).

Data Analysis and Statistical Comparisons

Data were analyzed usingWinLTP (v2.3, Bristol University),
ClampFit 9.0 (Molecular Devices), Origin 9.0 (MicroCal,
Northampton, MA), MS Excel (Microsoft, Redmond, WA),
Prism 4.0 (GraphPad, San Diego, CA), and MATLAB
(MathWorks Inc., Natick, MA). For LTP experiments, the max-
imum slope during the rising phase of the fEPSP was used as
a measure of excitatory synaptic strength. The magnitude of
LTP was defined as the average fEPSP slope during last
10minutes of recording (i.e., 51–60min after TBS) divided by
the average slope of the 30min preceding TBS. For whole cell
recordings of IPSCs, evoked responses were fit to the exponen-
tial function y = R An exp[�t/sn], where An and sn are the am-
plitude and the time constant of the nth component of a
multiexponential fit. Goodness of fit was evaluated by visual
inspection. To facilitate comparison of responses with differ-
ing numbers of decay constants we calculated and report here
the weighted time constant swt = R(Ansn)/RAn. For PPD, the
amplitude of the PS elicited by the 2nd SR stimulus (condi-
tioned) was divided by that elicited by the 1st (uncondi-
tioned). For CD, the amplitude of the PS elicited by the
SR stimulus following ALV stimulus (conditioned) was di-
vided by that elicited without a preceding ALV stimulus
(unconditioned).

Results are expressed as means ± SE. Outliers were identi-
fied using an online InterQuartile Range test software pack-
age (https://www.statskingdom.com/outlier-calculator.html;
k= 1.5) and excluded from further analysis. Comparisons of
evoked IPSCs and PS amplitude for PPD and CD were carried
out by one-tailed or two-tailed unpaired t-tests, as indicated,
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or z-tests (unconditioned versus conditioned responses). P-
values at or below 0.05 were deemed significant.

RESULTS

Etomidate Suppresses LTP through b2-GABAARs

Our prior studies of b3-N265M mice, in which etomidate
suppressed LTP in mutant as well as WT mice, implicated
b2-GABAARs in etomidate modulation of LTP (16). To test

the role of b2-GABAARs directly, we compared effects of eto-
midate on LTP of fEPSPSs in b2(N265M) versus WT mice
(Fig. 1A). In the absence of etomidate, the magnitude of LTP
was not different in slices from b2(N265M) versus WT mice
(WT aCSF: 155±8%; b2-N265M aCSF: 154± 5%; n = 8; P =
0.44). Etomidate (1mM) strongly reduced LTP in brain slices
from WT mice (WT etom: 118±5%; n = 8; P < 0.001, one-
tailed Student’s t test), as expected based on prior studies
(20, 29). However, etomidate failed to suppress LTP in brain
slices from b2-N265M mice (b2-N265M etom: 148± 5%; n = 8;
P = 0.213), confirming that b2-GABAARs are an essential tar-
get of etomidate for LTP suppression.

b2-GABAARs Contribute to GABAA,Slow IPSCs

GABAAR-mediated synaptic inhibition that targets CA1
pyramidal neuron dendrites is well suited to control
NMDAR-mediated LTP, due to its spatial proximity to excita-
tory input, its slow kinetics matching NMDARs, and its non-
linear outward rectification (26, 27). These “GABAA,slow”

synapses are known to be mediated in part by a5 subunit-
containing receptors in both neocortex and hippocampus
(27, 39, 40), and they are reduced in b3-GABAAR knockout
mice. To determine whether b2-GABAARs also contribute to
GABAA,slow synaptic inhibition, we performed whole-cell
patch clamp recordings of CA1 pyramidal neurons from WT
mice and b3(N265M) mice (in which only b2-GABAARs
remain sensitive to etomidate), and elicited GABAA,slow cur-
rents using electrical stimuli. Experiments were performed
in the presence of the glutamate receptor antagonists APV
and CNQX. Results are shown in Fig. 2. In WT mice, etomi-
date prolonged the decay of evoked GABAA,slow IPSCs
nearly 5-fold (swt,ctrl = 78 ± 5ms, swt,eto = 370 ± 10ms, n = 5).
In b3(N265M) mice, etomidate also prolonged the decay of
GABAA,slow IPSCs, but to a lesser degree than in WT mice
(swt,ctrl = 84 ± 10ms, n = 5; swt,eto = 205 ± 16ms, n = 5; P <
0.001; swt,eto versus smut,eto P = 0.002, one-tailed t test).
The decay of GABAA,slow IPSCs in aCSF did not differ
between genotypes (P = 0.62, two-tailed t test). These
results demonstrate that both b2- and b3-GABAARs con-
tribute to long-lasting dendritic inhibition in CA1 pyrami-
dal neurons.

Roles of b2- and b3-GABAARs in Feedforward and
Feedback Inhibition

The results from whole cell patch clamp recordings pre-
sented above indicate that both b2- and b3-GABAARs con-
tribute to GABAA,slow dendritic inhibition. Are they activated
by the same or different presynaptic sources? There are
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Figure 1. Etomidate suppresses long term potentiation (LTP) through b2-
GABAARs. A and B: the extracellularly recorded field excitatory postsynap-
tic potential (EPSP) in the CA1 region in response to electrical stimulation
of stratum radiatum was recorded in brain slices bathed in artificial cere-
brospinal fluid (aCSF) alone or in the presence of etomidate (1mM). After a
30-min stable baseline, LTP was induced by theta burst stimulation (TBS),
in brain slices taken from wild-type mice (A) or mice carrying the b2
(N265M) mutation (B). The slope of the rising phase was normalized to the
mean value for 30min preceding TBS. Each point represents the means ±
SE of 8 experiments. C: comparison of the average EPSP slope during the
last 10min of the recording, normalized to the 30-min baseline. Etomidate
suppressed LTP in wild-type mice (��P < 0.001, one-tailed t test) but not
b2(N265M) mice (P = 0.21, one-tailed t test).
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several different classes of interneurons that target pyrami-
dal neuron apical dendrites, and they can subserve either
feedforward inhibition, or feedback inhibition, or both,
depending on their excitatory drive. To determine whether
b2- and b3-GABAARs are differentially engaged by feedfor-
ward versus feedback inhibitory circuitry, we tested the
effect of a preceding conditioning stimulus on the amplitude

of the population spike (PS) evoked by SR stimulation, meas-
uring the time-dependent suppression of the PS in brain sli-
ces from WT and b3(N265M) mice, in the absence and
presence of etomidate.

To assess feedforward inhibition, the conditioning stimu-
lus was the same as the SR test stimulus (Fig. 3A); we term
this paradigm “paired-pulse depression” (PPD). In brain sli-
ces from WT mice under control conditions (aCSF only), the
second stimulus of the pair produced a smaller response
than the first only at the shortest interpulse intervals (Fig. 3,
B andD). At longer IPIs, ranging from 20–300ms, the second
(conditioned) response was larger than the first (uncondi-
tioned) response, due to presynaptic facilitation of the
afferent excitatory synapse. Etomidate caused the ampli-
tude of the conditioned PS to be reduced at intervals rang-
ing from 40–500ms (aCSF versus etom, one-tailed t test;
n = 6 for wild type, n = 5 for b3(N265M); �P < 0.05, ��P <
0.01), consistent with its ability to enhance long-lasting
dendritic inhibition (Fig. 2). In brain slices from b3
(N265M) mice, responses were similar to those of WT mice
under control conditions (Fig. 3, C and D), but etomidate
failed to alter the conditioned response at any interpulse
interval (aCSF versus etom, one-tailed t test; n = 5 for both
genotypes; P > 0.05 at all IPIs). These results indicate that
long-lasting feedforward inhibition is mediated entirely
by b3-GABAARs.

To assess feedback inhibition, the conditioning stimulus
was applied to the alveus, where the CA1 pyramidal neuron
axons are located (Fig. 4A); we term this paradigm “condi-
tioned depression” (CD). In brain slices fromWTmice under
control conditions, the conditioned response (to stim 2 in
the SR) was smaller than the unconditioned response (SR
stim without prior stim 1) at all IPIs up to 300ms (Fig. 4, B
and D; z-test, n = 5, P < 0.01 at all intervals). Etomidate fur-
ther depressed the conditioned response at all intervals rang-
ing from 15–500ms (paired t test, n = 5, P < 0.05 at all IPIs,
P < 0.01 at IPI= 20–300ms). In brain slices from b3(N265M)
mice, the conditioned response in aCSF was reduced to a
smaller extent compared to WT mice at intervals from 5–
80ms [one-tailed t test, WT vs. b3(N265M), n = 5 for each ge-
notype, P < 0.05 at all IPIs, P < 0.01 at IPI = 5–40ms].
Etomidate further depressed the conditioned PS, but only at
intervals up to 150ms (paired t test, n = 5, P < 0.05 at all
IPIs). These results indicate that b2-GABAARs do contribute
to feedback inhibition at intervals up to 150ms, and that b3-
GABAARs contribute over this same range, and also up to
500ms. The difference in CD even in the absence of etomi-
date between WT and b3(N265M) mice indicates that
the mutation itself reduces feedback inhibition, perhaps
through changes in intrinsic receptor properties induced
by the mutation (11). These results further support a par-
tial contribution of b3-GABAARs to feedback inhibition.

To summarize the contributions of b2- and b3-GABAARs
to feedforward and feedback inhibition, we plotted the
fractional change in PS amplitude induced by etomidate
in the two experimental paradigms (PPD and CD) for
each genotype (Fig. 5). These graphs highlight the contri-
bution of b2-GABAARs to feedback inhibition at intervals
up to 200ms, and of b3-GABAARs to both feedforward in-
hibition and feedback inhibition at intervals up to
500ms.
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Figure 2. b2-GABAARs contribute to GABAA,slow IPSCs in hippocampal py-
ramidal neurons. A and B: representative whole cell patch clamp recordings
from CA1 pyramidal neurons, in response to electrical stimulation at the stra-
tum radiatum/stratum lacunosum-moleculare border. Recordings were per-
formed in the absence and presence of etomidate (etom; 1 mM). GABAAR-
mediated currents were isolated using QX-314 in the recording electrode to
block GABAB receptors. The recording electrode was filled with a CsCl-
based solution, so inhibitory currents are inward. Currents are normalized
to the peak amplitude. C: average weighted decay time constants (sdecay,wt)
for evoked GABAA,slow IPSCs recorded from wild type vs. b3(N265M) mice,
in the absence and presence of etomidate. n=4 or 5 for each genotype,
error bars means ± SE. The decay rate did not differ between genotypes in
the absence of etomidate (P = 0.62, two-tailed t test), but in the presence of
etomidate it was significantly smaller in mutant mice compared to wild-type
mice (P = 0.002, two-tailed t test). GABAARs, c-aminobutyric acid type A
receptors; IPSCs; inhibitory postsynaptic currents.
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DISCUSSION
The primary findings from this study are: 1) etomidate

modulation of b2-GABAARs is essential to its ability to
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suppress LTP in hippocampal CA1 neurons; 2) both b2- and
b3-GABAARs contribute to dendritic GABAA,slow inhibitory
currents; and 3) b2-GABAARs contribute to an early compo-
nent of feedback inhibition, but not to feedforward inhibi-
tion in the CA1 region of the hippocampus, whereas b3-
GABAARs contribute to both. These findings indicate that if
etomidate acts by modulating pyramidal neuron b2-
GABAARs, it is through the early component of feedback
inhibition.

LTP Suppression by Etomidate

The mechanism by which a wide variety of drugs produce
the constellation of behavioral changes that constitute “gen-
eral anesthesia” remains undefined but of considerable in-
terest. In recent years, it has become clear that each “end
point,” such as hypnosis, immobility, and amnesia, is
brought about by anesthetic modulation of distinct brain
regions, cellular elements, and molecular targets. To deduce
the mechanisms for specific end points, etomidate has been
studied heavily, because (at concentrations that are obtained
clinically) it acts on a quite restricted range of targets:
GABAARs that incorporate either b2 or b3 subunits (10).
However, even within this restricted range, etomidate’s abil-
ity to bring about several end points have been traced to
modulation of distinct subsets of receptors. Our recent
report that b3-N265M mice remain sensitive to etomidate
suppression of LTP and contextual fear conditioning impli-
cated b2-GABAARs (16). Our present findings confirm that
b2-GABAARs are essential to LTP suppression by etomidate.

Dendritic Inhibition of Pyramidal Neurons

How might enhancement of synaptic inhibition suppress
LTP? One possibility is through GABAARs on pyramidal neu-
rons. Three physiologically distinct types of inhibition are
found in pyramidal neurons: 1) rapidly decaying synaptic
currents (GABAA,fast) that are produced by perisomatic tar-
geting interneurons such as basket cells and axoaxonic cells;
2) slowly decaying synaptic currents (GABAA,slow) that are
produced by dendrite-targeting interneurons including so-
matostatin-expressing O-LM cells and neurogliaform cells
(NGFCs) activating a5-GABAARs (27); and 3) a tonic background
current that is mediated by a5-GABAARs (41). Enhancement of
tonic inhibition has been proposed to underly suppression of
LTP and memory (21), but GABAA,slow inhibition also has sev-
eral characteristics that make it particularly well suited to

controlling synaptic plasticity. These include 1) its location
proximate to excitatory synapses, 2) its prolonged duration
matching NMDAR-mediated currents, and 3) its pronounced
rectification, which enhances its ability to counteract voltage-
dependent amplification of dendritic depolarizing signals
(26, 27).

Our prior studies using a b3-subunit knockout mouse had
implicated b3-GABAARs in GABAA,slow synaptic inhibition
(42). Our present findings confirm that result, demonstrating
that b3-GABAARs mediate a major portion of the GABAA,slow

IPSC evoked by dendritic layer stimulation, and that they are
solely responsible for feedforward inhibition, as well as the
late component of feedback inhibition that extends beyond
200ms under the influence of etomidate. From the present
results, we are not able to determine which a-subunits part-
ner with b3-subunits, but several lines of evidence point to
a5-subunits: 1) a5-subunits contribute to GABAA,slow IPSCs
(40, 43); 2) electrophysiological and pharmacological charac-
teristics of acutely dissociated hippocampal pyramidal
neurons indicate that the a5b3c2 subunit combination con-
stitutes the majority of receptors (24); 3) the distribution pat-
tern of b3 subunits in the hippocampus that matches that of
a5 subunits (18, 19); and 4) a5 subunits preferentially associ-
ate with b3 subunits (23). This same subunit combination
(a5b3c2) is also the likely source of tonic inhibition, as tonic
inhibition in CA1 pyramidal neurons is mediated by a5-
GABAARs (41), and it is insensitive to etomidate in b3-N265M
mice, indicating that it is produced entirely by b3-GABAARs.
Taken together, these findings indicate that tonic inhibition
and GABAA,slow are likely produced by a single population of
a5b3c2 receptors that can move between extrasynaptic and
synaptic sites under the regulation of phosphorylation and
anchorage by radixin to the cytoskeleton (44). Our prior
studies showing that b3-N265M mice remain sensitive to
LTP suppression by etomidate (16), and our present studies
showing that b2-N265M mice are resistant, indicate that nei-
ther tonic inhibition nor the b3-GABAAR component of
GABAA,slow inhibition are essential to LTP suppression by
etomidate.

As b2-GABAARs mediate a portion of feedback-activated
GABAA,slow inhibition, could they underlie LTP suppres-
sion by etomidate? b2- and b3-GABAARs are apparently
not intermingled at GABAA,slow synapses, as feedforward
inhibition exclusively activates b3-GABAARs, whereas
feedback inhibition activates both (Figs. 4 and 5). It is
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possible that feedback inhibitory pathways that utilize b2-
versus b3-GABAARs contact different locations within the
dendritic tree, whether segregated along the proximo-dis-
tal axis, or on different branches, and that these different
dendritic inhibitory influences are differentially effective
in controlling the depolarization needed to initiate synap-
tic plasticity. Another possibility is that presynaptic sites
that innervate b2- versus b3-GABAARs differ in their use-
dependent characteristics, and synapses that exhibit use-
dependent depression versus facilitation might differen-
tially influence LTP. Although we know of no direct evidence
to support either of these possibilities, it is known that excita-
tory signaling and dendritic spikes can be confined to individ-
ual branches (45), and that both facilitating and depressing
inhibitory synapses occur (46, 47). Therefore, it is possible
that etomidate suppresses LTP by modulating a distinct sub-
set of slow inhibitory synapses on pyramidal neurons that uti-
lize b2-GABAARs.

From the present experiments we cannot determine
which a subunits co-assemble with b2 subunits in this com-
ponent of GABAA,slow. However, since b2-subunits preferen-
tially assemble with a1 subunits (48), and only a portion of
GABAA,slow is mediated by a5-subunits (40, 43), receptors
composed of a1b2c2 are one possibility. b2-GABAARs can
also coassemble with a5 subunits, and these receptors dis-
play deactivation characteristics that are faster than a5b3c2
receptors (49), consistent with the weaker prolongation of
GABAA,slow that we observed in our whole-cell recordings
(Fig. 2). Therefore, a5b2c2 receptors may also underlie a por-
tion of feedback dendritic inhibition.

Which cells might be involved in long-lasting feedforward
and feedback inhibition? Somatostatin-expressing oriens-lacu-
nosum-moleculare (O-LM) interneurons receive excitatory
input from pyramidal neurons, and they produce a synaptic
current in pyramidal neurons that has a decay rate that is in-
termediate to somatic GABAA,fast currents from basket cells
versus dendritic GABAA,slow currents from neurogliaform cells
(35, 50). Therefore, O-LM interneurons likely contribute to the
early component of b2-GABAARmediated feedback inhibition
(Fig. 5). Ivy cells, which share developmental origins and some
properties with neurogliaform cells (51–53), including a very
dense axonal arbor that supports slow IPSC generation by vol-
ume transmission, target pyramidal neuron basal and oblique
apical dendrites with a long-lasting feedback inhibition (54),
so they are likely candidates for the late b3-mediated compo-
nent of feedback inhibition. Since their dendritic arbor
extends throughout stratum oriens and stratum radiatum (54),
they might also receive excitatory input from CA3 pyramidal
neurons and thus also mediate long-lasting feedforward inhi-
bition, but this possibility remains speculative. Like ivy cells,
neurogliaform cells generate large and long-lasting IPSCs (55),
and they are known to be activated in a feedforward fashion,
but primarily by perforant path inputs (56).

Slow a5b2-Mediated Inhibition of Interneurons

Rather than acting through pyramidal neurons, it is possi-
ble that etomidate instead, or in addition, suppresses LTP
(and by extension memory) by modulating b2-GABAARs on
interneurons. Indeed, in the hippocampus, immunohisto-
chemical (18, 31), and transcriptomic analysis (57) indicate

that b2-GABAARs are found primarily on interneurons.
Importantly, a5 subunits are also found on interneurons (30,
58), though at lower levels than on pyramidal neurons (59).
Etomidate action through interneurons that express a5b2-
GABAARs would be consistent with our previous finding that
eliminating a5 subunits selectively from pyramidal neurons
did not render brain slices insensitive to LTP suppression,
though global a5-knockout did (29).

If etomidate does suppress LTP by enhancing b2-mediated
inhibition of interneurons, which classes of interneurons
might be involved? Useful cluesmight come from an examina-
tion of a5 subunit distribution. The clearest physiological evi-
dence for a5-GABAAR-mediated IPSCs in interneurons comes
from studies of O-LM interneurons, where a5 subunits contrib-
ute to slowly decaying IPSCs made by vasoactive intestinal
peptide (VIP)- and calretinin-positive interneurons onto the
dendrites (58, 60). Enhancement of this inhibitory influence
would then suppress O-LM firing, interrupting a disinhibitory
input onto SR interneurons that supports LTP (61). In addition,
slow IPSCs made by neurogliaform cells onto other neuroglia-
form cells, as well as autaptic synapses, are mediated in part
by a5 subunits (50). By virtue of their developmental, ana-
tomic, and physiological similarities with neurogliaform cells
(51–53), ivy cells might also receive a5-mediated inhibitory
inputs, but again this remains speculative.

It is interesting that both O-LM and neurogliaform/ivy inter-
neurons target the dendrites of pyramidal neurons. For neuro-
gliaform cells at least this occurs through a5-GABAARs.
Nevertheless, selective knockout experiments indicate that
these a5-GABAARs are not etomidate’s essential targets (29).
This curious combination of findings suggests that there are
subcircuits within the hippocampus that are enriched in a5
subunits at multiple levels. Our present results suggest that
these circuits also incorporate b2 subunits, and that they con-
trol LTP initiated by theta-burst stimuli in vitro. In vivo, both
O-LM and neurogliaform/ivy cells exhibit activity that is time-
locked to h-oscillations (62); h-oscillations in turn are inti-
mately involved in hippocampal function, including spatial
learning andmemory (63). Modulation of h-oscillations by eto-
midate is altered in b3-GABAAR KOmice (42), but the strength
of cross-frequency coupling between h-c is unaffected, as is the
transient suppression of fast inhibition that has been proposed
to play a role in this phenomenon (64). These findings suggest
the testable hypothesis that b2-GABAAR modulation of cross-
frequency coupling through interneurons may therefore be
instrumental in etomidate’s effects.
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