Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure

Kari A. Johnson a,1, Daniel J. Liput a, Gregg E. Homanics b, David M. Lovinger a, *

a Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD, 20892, USA
b Departments of Anesthesiology, Neurobiology, and Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, 6068 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, USA

ARTICLE INFO
Article history:
Received 21 May 2019
Received in revised form 10 June 2019
Accepted 14 June 2019

Keywords:
Chronic intermittent ethanol exposure
Basal ganglia
Synaptic transmission
Synaptic plasticity
Adolescent alcohol

ABSTRACT
Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a G i/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.

Published by Elsevier Inc.

Introduction
Chronic alcohol exposure produces maladaptive behaviors that reflect increased engagement of dorsolateral striatum (DLS)-dependent action strategies, such as habitual alcohol seeking (Barker et al., 2015; Corbit & Janak, 2016; Gremel & Lovinger, 2017). Loss of flexible, goal-directed control over alcohol seeking is likely to contribute to high levels of alcohol consumption after long periods of alcohol exposure. Animals exposed to alcohol prior to training in instrumental learning tasks for either alcohol or natural reinforcers show increased reliance on habitual response strategies (Corbit, Nie, & Janak, 2012, 2014; Dickinson, Wood, & Smith, 2002; Renteria, Baltz, & Gremel, 2018), which are known to depend on DLS activity (Balleine, Liljeholm, & Ostlund, 2009; Yin, Knowlton, & Balleine, 2004). Habitual alcohol seeking in rats is reduced by...
pharmacological inactivation of the DLS or blockade of fast glutamatergic transmission within the DLS (Corbit et al., 2012, 2014), suggesting that enhanced glutamatergic drive to this region, which primarily arises from sensorimotor cortical regions and the infralaminar nuclei of the thalamus (Hunnicutt et al., 2016), could account for the predominance of DLS-dependent response strategies following alcohol exposure. In addition to enhanced habit formation, prior alcohol exposure also promotes other DLS-dependent learning, such as improved performance in a visual discrimination task (DePoy et al., 2013), and this is associated with increased firing of DLS neurons during learning. Identification of adaptations in DLS physiology that promote the use of DLS-dependent behavioral strategies will provide critical opportunities to design interventions aimed at reducing habitual alcohol seeking.

Glutamatergic inputs to medium spiny neurons (MSNs), the major projection neurons of the striatum, are critical determinants of MSN activity. Presynaptic group I (mGlu1)–activating G protein-coupled receptors (GPCRs) modulate the strength of glutamatergic inputs to the striatum by reducing glutamate release. Impaired presynaptic regulation of glutamate release in afferents to the DLS represents a mechanism by which DLS activity could be enhanced to promote the use of habitual action strategies. Adaptations in GPCR function caused by alcohol and other drugs of abuse have been well-documented, including impaired CB1 cannabinoid receptor and μ-opioid receptor function in glutamatergic inputs to the striatum following alcohol exposure (Adermark, Jonsson, Ericson, & Soderpalm, 2011; DePoy et al., 2015, 2013; Johnson et al., 2017). Moreover, both prior alcohol exposure and alcohol withdrawal enhance the use of DLS-dependent behavioral strategies. Currently, it is unknown whether alcohol exposure disrupts mGlu2 function in glutamatergic neurons that drive DLS activity.

In this study, we aimed to determine whether mGlu2-mediated presynaptic depression of glutamate transmission in the DLS is impaired by alcohol exposure. Because there are differences in vulnerability to alcohol across the lifespan (Crews, Vetroen, Broadwater, & Robinson, 2016; Spear & Swartzwelder, 2014), we assessed alcohol effects on mGlu2–LTD in both adolescent and adult mice. We report that adolescent mice subjected to a chronic intermittent ethanol vapor exposure (CIE exposure) paradigm are uniquely vulnerable to alcohol-induced disruptions of mGlu2-mediated synaptic plasticity in the dorsal striatum. Using whole-cell patch clamp recordings in acute striatal slices, we find that CIE exposure impairs the long-term, but not the early component of mGlu2–mediated depression of glutamate transmission in the DLS. Incubation of striatal slices from alcohol-naïve adolescent mice with ethanol does not mimic the effect of CIE exposure on mGlu2–LTD. In contrast to our findings in the DLS, CIE exposure only modestly reduces the magnitude of mGlu2–LTD in the dorsomedial striatum (DMS). Finally, we demonstrate that in slices from CIE-exposed mice, mGlu2–LTD in the DLS can be rescued by acute application of a positive allosteric modulator of mGlu2, which has important implications for future efforts to correct alcohol-induced adaptations in synaptic plasticity using pharmacological interventions.

Materials and methods

Animals

Animals were housed in the Fishers Lane Animal Care facility managed by the National Institute on Alcoholism and Alcohol Abuse (NIAAA). Studies were carried out in accordance with the National Institutes of Health guide for the care and use of laboratory animals and were approved by the NIAAA Animal Care and Use Committee. Male C57BL/6J mice (Jackson Laboratories; Bar Harbor, Maine, United States; Stock No. 000664) were used for all alcohol exposure experiments. All subjects were allowed to acclimate to the facility for at least 1 week prior to onset of alcohol exposure. Mice with a global deletion of the gene encoding mGlu2 (Grm2) were used for mGlu2 antibody validation. Mice were housed on a 12-h light/dark cycle on ventilated racks in a temperature- and humidity-controlled room with ad libitum access to food and water.

Generation of Grm2 knockout mice

CRISPR/Cas9-based mutagenesis was used to create Grm2 gene knockout (Fig. S1A) and floxed mice. Floxed mouse production will be described elsewhere. Benchling.com was used to identify sgRNA binding sites in introns 2 and 3 of the Grm2 locus (Fig. S1B). Cas9 mRNA (Cong et al., 2013) and tru-sgRNAs (Fu, Sander, Reyon, Cascio, & Joung, 2014) were produced by in vitro transcription as described (Bassett, Tibbitt, Ponting, & Liu, 2013; Blednov et al., 2017). sgRNAs (75 ng/μL), Cas9 mRNA (50 ng/μL), and loxP targeting oligonucleotides (50 ng/μL) were microinjected into the cytoplasm of C57BL/6J one-cell mouse embryos using standard procedures (Blednov et al., 2017; Yang, Wang, & Jaenisch, 2014). One of the founder mice obtained was mosaic and transmitted the floxed allele or a deletion allele to offspring. No off-target mutations were detected in the founder for the top nine sites that were predicted by Benchling for either sgRNA. The deletion allele removed 1843 bp from the Grm2 locus including exon 3 (838 bp) and inserted 27 bp that includes a partial loxP sequence (Fig. S1C). Deletion of Exon 3 is predicted to create a frameshift mutation. Mice were maintained on an inbred C57BL/6J genetic background. Mice were genotyped by PCR. WT specific F1 (5′-CAGATCTGCGTCGCATGGA-3′) and R1 (5′-TTGCTTCCA TTGGA TGCCC-3′) primers produced a 420 bp amplicon. Primer F1 was used with R2 (5′-CACCTAAAATAGAAGTCCCGC-3′) to produce a 336 bp amplicon that was specific to the K0 allele (note: the 2152 bp amplicon from the WT allele with this primer set was not consistently observed).

Chronic intermittent ethanol vapor exposure (CIE) and withdrawal

Mice were exposed to two rounds of ethanol vapor or air (control condition). Rounds consisted of four consecutive 16-h vapor or air exposure sessions (5:00 PM—9:00 AM, Monday evening through Friday morning), separated by 8 h of withdrawal. For late adolescent alcohol exposure, the first cycle of CIE exposure began when mice were 6 weeks old. Adult CIE exposure began when mice were 12–14 weeks old. During exposure, mice remained in their...
home cage with the lid removed to allow airflow into the cage. Wire racks containing food and water bottles remained in place. Cages were placed in Plexiglas® chambers (Plas Labs Inc.; Lansing, Michigan, United States). Air was bubbled through 95% ethanol at a rate of 2–3 L/min to volatilize the ethanol. Ethanol vapor was then combined with another air stream for a total flow rate of ~10 L/min into the chamber. Controls were exposed to room air at the same flow rate. Ethanol levels were adjusted so that an air sample (diluted 1:12) from the chamber resulted in ethanol concentrations of 0.175–0.200 mg/L. Mice were not given pyrazole or ethanol-loading injections prior to placement in the vapor chambers. Throughout the two rounds of alcohol exposure, mice were housed in the room containing the vapor chamber system to avoid unnecessary stress associated with transport. The same light cycle, temperature, and humidity controls as the primary housing room were maintained in this satellite room. Mice were restrained and tail blood was collected at the end of the 3rd or 4th ethanol exposure, and blood ethanol concentrations were determined according to manufacturer instructions using an Analox Alcohol Analyzer (Analox Instruments; United Kingdom) or an alcohol detection assay kit (Pointe Scientific; Canton, Michigan). Mice were sacrificed for electrophysiology experiments or tissue harvesting for gene expression analysis 3–6 days after the last ethanol exposure session, unless otherwise noted.

Brain slice preparation

Acute brain slices (coronal, 250–μm thick) were prepared using a vibratome V1200S (Leica Microsystems) as previously described (Johnson et al., 2017). Mice were anesthetized with isoflurane prior to decapitation, and brains were rapidly removed and immediately submerged in ice-cold cutting solution containing (in mM): 30 NaCl, 4.5 KCl, 1 MgCl₂, 26 NaHCO₃, 1.2 NaH₂PO₄, 10 D-glucose, and 194 sucrose, continuously bubbled with 95% O₂/5% CO₂. Slices were placed in a 32 °C holding chamber filled with artificial cerebrospinal fluid (aCSF) at a rate of ~1.5 mL/min. Recording pipettes (2.0–4.0 MΩ resistance in bath) were filled with Cs₃-based internal solution (295–300 mM) containing (in mM): 124 NaCl, 4.5 KCl, 2 CaCl₂, 1 MgCl₂, 26 NaHCO₃, 1.2 NaH₂PO₄, and 10 D-glucose, 305–310 mM, continuously bubbled with 95% O₂/5% CO₂. Slices were allowed to recover for 30 min at 32 °C, and then were incubated at room temperature for 1–6 h prior to beginning experiments.

Whole-cell voltage clamp electrophysiology recordings and analysis

Whole-cell voltage-clamp recordings were performed as previously described (Johnson et al., 2017). Hemisected slices were submerged in a diamond-shaped recording chamber (Warner Instruments) and were continuously perfused with 30–32 °C aCSF at a rate of ~1.5 mL/min. Recording pipettes (2.0–4.0 MΩ resistance in bath) were filled with Cs₃-based internal solution (295–300 mM) containing (in mM): 124 NaCl, 4.5 KCl, 2 CaCl₂, 1 MgCl₂, 26 NaHCO₃, 1.2 NaH₂PO₄, and 10 D-glucose, 305–310 mM, continuously bubbled with 95% O₂/5% CO₂. Slices were allowed to recover for 30 min at 32 °C, and then were incubated at room temperature for 1–6 h prior to beginning experiments. Access resistance was monitored during recordings, and only cells with a stable access resistance (less than 20% change from baseline) were included for analysis. Recordings were filtered at 2 kHz and digitized at 10 kHz (Digidata 1322A, Axon Instruments). For all recordings, 50-μM picrotoxin was included in the aCSF to block fast GABAergic transmission.

EPSC amplitudes were measured using Clampfit 10 software (Molecular Devices). GraphPad Prism 7.0 was used to prepare graphs and perform statistical analyses. EPSC amplitudes were averaged each minute and normalized to the average EPSC amplitudes during a stable 10-min baseline recording. Early drug effects were measured at 8–10 min after the onset of LY379268 application, and LTD magnitude was measured at 26–30 min after onset of LY379268 application. Sample traces and ± baseline values reported in the text are averaged from these time windows. In some cases, stimulation artifacts in sample traces were truncated for clarity. All data are reported as mean ± SEM. N values represent the number of recorded cells. One experiment was performed on each slice. Each reported condition contains experiments obtained from at least two animals, but typically more, and from at least two cohorts of C57Bl/6J mice when applicable. Comparisons of early depression or LTD magnitude between groups were made using an unpaired t-test or a two-way ANOVA followed by post hoc Tukey’s test for multiple comparisons. Alpha was set at 0.05.

Drugs and treatments

Picrotoxin, QX-314, and dimethylsulfoxide (DMSO) were purchased from Sigma–Aldrich (St. Louis, Missouri, United States). LY379268 was purchased from Tocris (Minneapolis, Minnesota, United States), and stock solutions were prepared at 10 mM in 0.01 N NaOH. mGlut-2/LTD was induced by a 5-min application of 100 nM of LY379268 (diluted in aCSF). LY487379 was purchased from Tocris, and stock solutions were prepared at 10 mM in DMSO. LY487379 or control DMSO concentration (0.1%) were diluted in aCSF and held constant throughout the experiment. In our experience, this concentration of DMSO does not affect the magnitude or time course of mGlut-2/LTD. 95% ethanol was purchased from the U.S. Department of Health and Human Services Supply Service Center.

Quantitative polymerase chain reaction (qPCR) and analysis

Mice were anesthetized with isoflurane and decapitated, and brains were removed and rinsed in cold 0.9% NaCl. 1-mm coronal sections were prepared using a stainless steel brain matrix, and samples from primary motor cortex, agranular insular cortex, medial prefrontal cortex, and thalamus were placed in RNA later (Invitrogen), stored at 4 °C for 60 min, then removed from RNA later and frozen at −80 °C prior to RNA extraction. RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen), and RNA concentration was measured using a Nanodrop (Thermo Fisher Scientific). RNA (100–140 ng) was reverse-transcribed using the Quantitect Reverse Transcription Kit (Qiagen). qPCR reactions contained 2 μL cDNA template, 1 μL pre-designed TaqMan Gene Expression Assay (Mm01235832), 10 μL TaqMan Fast Advanced Master Mix (both from Thermo Fisher Scientific), and 7 μL Ultrapure water (Invitrogen). qPCR was run on a StepOnePlus system (Thermo Fisher Scientific) and was performed according to the manufacturer’s recommended settings: 50 °C for 2 min, 95 °C for 2 min, and then 40 cycles of melting at 95 °C for 1 s and annealing/extension at 60 °C for 20 s. Reactions were run in triplicate for 7–8 animals per group. Analysis was performed using the 2⁻ΔΔCT method (Schmittgen & Livak, 2008). The Ct value was determined by identifying the cycle number at which the amplification curve reached a ΔRn threshold set at 0.1 (ΔΔRn = Rn – baseline, where Rn
is the fluorescence of the reporter dye divided by the fluorescence of a passive reference dye. Relative mGlu2 expression was quantified using Actb as an internal control (Applied Biosystems #4351315). Thus, ΔCT = CT (mGlu2) − CT (Actb). Between-group comparisons were performed using an unpaired t test.

Protein expression analysis

Mice were anesthetized with isoflurane and decapitated, and brains were removed and rinsed in cold 0.9% NaCl. 1-mm coronal sections were prepared using a stainless steel brain matrix, and bilateral 1-mm punches from DLS and DMS were placed in microcentrifuge tubes and immediately frozen on frozen carbon dioxide, then stored at −80 °C until protein extraction. Samples were homogenized on ice in 50 μL of RIPA buffer (ThermoFisher Scientific) containing 1 × Halt TM ProteaseInhibitor Cocktail (ThermoFisher Scientific) and centrifuged at 20,000 × g for 20 min at 4 °C. Protein concentration was determined using the Pierce TM BCA protein assay (ThermoFisher Scientific) according to the manufacturer’s instructions. Protein concentrations were calculated from a standard curve fit to a quadratic function. mGlu2 protein expression was quantified using the Wes TM capillary electrophoresis system (ProteinSimple®) according to the manufacturer’s instructions, with the exception that samples were denatured at room temperature to minimize protein aggregation common toGPCRs. Preliminary experiments were conducted to determine optimal primary antibody and protein concentrations. Assays were run using 0.5 μg/μL total protein, monoclonal rabbit anti-mGlu2 antibodies (1:500, D7D8M mAb#76012, Cell Signaling Technology), and HRP-conjugated goat anti-rabbit secondary antibodies (1×, ProteinSimple®). The specificity of the anti-mGlu2 antibodies was determined using protein lysates from the striatum of mGlu2 global knockout mice. mGlu2 immunoreactivity was observed as two peaks in the electrophoretogram positioned at approximately 112 kDa and 180 kDa. Each sample was analyzed in duplicate, and mGlu2 immunoreactivity was quantified by integrating the chemiluminescence signal from 78 kDa to 345 kDa and normalizing to total protein.

Results

CIE exposure does not disrupt mGlu2-LTD in the DLS of adult mice

To investigate the effects of alcohol exposure on mGlu2-mediated depression of glutamatergic transmission in the DLS, we used a CIE-exposure protocol in which mice were placed in ethanol vapor exposure chambers or control air exposure chambers for 16 h per day, 4 days per week, for two cycles, with 3 days of withdrawal between cycles. Mice were allowed to withdraw from ethanol for 3–6 days prior to preparation of brain slices for ex vivo electrophysiology recordings. Blood ethanol concentrations measured at the end of the third or fourth 16-h exposure session were 184.1 ± 12.7 mg/dL (n = 13), which was not significantly different from ethanol concentrations measured from adult mice (p = 0.96, unpaired t test). CIE exposure caused a disruption of the long-term component, but not the early component of LY379268-induced depression of transmission (Fig. 2). Loss of the robust mGlu2-LTD observed in alcohol-naive mice could be caused by reduced mGlu2 signaling due to lower expression levels or impaired coupling to heterotrimeric G proteins, both of which could be rescued by enhancing receptor activation with a positive allosteric modulator (Nichols & Conn, 2014). Thus, we evaluated the effects of the mGlu2-selective positive allosteric modulator (PAM) LY487379 (10 μM, present throughout recording) on mGlu2-LTD in slices prepared from mice immediately after completing the last ethanol exposure session. Similar to the results obtained following more prolonged withdrawal, CIE exposure did not affect the early depression of EPSCs by LY379268 (40.9 ± 5.8% of baseline for controls vs. 53.2 ± 7.4% of baseline for CIE exposure, p = 0.22, unpaired t test) (Fig. 3A–C), whereas the magnitude of mGlu2-LTD was significantly impaired by CIE exposure (42.9 ± 3.7% of baseline vs. 38.6 ± 3.9% of baseline in controls vs. 48.9 ± 9.5% of baseline in CIE-exposed mice, p = 0.36) (Fig. 1).

Age-dependent vulnerability to alcohol-induced neuroadaptations has been identified for a number of cellular, physiological, and behavioral measures (Crews et al., 2016; Spear & Swartzwelder, 2014). Thus, we measured mGlu2-mediated depression of electrically evoked glutamate transmission in the DLS following exposure session administered during late adolescence (two cycles of CIE exposure beginning at 6 weeks of age). Blood ethanol concentrations measured at the end of the third or fourth 16-h exposure session were 184.1 ± 12.7 mg/dL (n = 13), which was not significantly different from ethanol concentrations measured from adult mice (p = 0.96, unpaired t test). CIE exposure caused a disruption of the long-term component, but not the early component of LY379268-induced depression of transmission (Fig. 2). Loss of the robust mGlu2-LTD observed in alcohol-naive mice could be caused by reduced mGlu2 signaling due to lower expression levels or impaired coupling to heterotrimeric G proteins, both of which could be rescued by enhancing receptor activation with a positive allosteric modulator (Nichols & Conn, 2014). Thus, we evaluated the effects of the mGlu2-selective positive allosteric modulator (PAM) LY487379 (10 μM, present throughout recording) on mGlu2-LTD in slices prepared from mice immediately after completing the last ethanol exposure session. Similar to the results obtained following more prolonged withdrawal, CIE exposure did not affect the early depression of EPSCs by LY379268 (40.9 ± 5.8% of baseline for controls vs. 53.2 ± 7.4% of baseline for CIE exposure, p = 0.22, unpaired t test) (Fig. 3A–C), whereas the magnitude of mGlu2-LTD was significantly impaired by CIE exposure (42.9 ± 3.7% of baseline vs. 38.6 ± 3.9% of baseline in controls vs. 48.9 ± 9.5% of baseline in CIE-exposed mice, p = 0.36) (Fig. 1).
Acute ethanol does not disrupt mGlu2-LTD

Acute alcohol exposure is also known to alter synaptic physiology, so we asked whether exposing slices obtained from alcohol-naive mice to alcohol would cause an immediate disruption to mGlu2-LTD in the DLS. We perfused striatal slices with aCSF containing 40 mM ethanol to mimic the blood ethanol concentrations measured in our CIE-exposure paradigm (mean 41.2 mM). When ethanol was present throughout the recording, LY379268 still produced robust LTD of EPSCs in the DLS that was similar in magnitude to LTD observed in control animals in the absence of ethanol (40.4 ± 5.3% of baseline, n = 7) (Fig. 4).

CIE exposure impairs mGlu2-LTD in the DMS of adolescent mice

Chronic alcohol is known to produce a shift toward reliance on DLS-dependent control of behavior, including enhanced habit formation and reversal learning in a visual discrimination task. Impaired mGlu2-dependent presynaptic inhibition of glutamate release represents a plausible mechanism by which the DLS becomes disinhibited to influence behavior. However, mGlu2 activation could also induce LTD of glutamate transmission in the DMS, an area of the striatum that is critical for goal-directed behavioral strategies (Balleine et al., 2009; Yin, Ostdlund, Knowlton, & Balleine, 2005). We compared the effects of LY379268 on electrically evoked EPSCs recorded from the DMS of adolescent mice exposed to air or CIE and found that similar to effects observed in the DLS, LY379268 application induces LTD of glutamate transmission in the DMS (Fig. 5A). Differences between air-exposed and CIE-exposed mice during the early component of LY379268-induced synaptic

Fig. 1. CIE exposure during adulthood does not impair mGlu2-LTD. (A) Time course of LY379268 (100 nM, 5 min) effects on electrically evoked EPSC amplitudes recorded in the DLS in slices from air-exposed or CIE-exposed mice; n = 6 (air-exposed) or 8 (CIE-exposed) cells per group. (B) Sample traces from baseline (left), early depression (middle), and long-term depression (right) from representative experiments. Scale bars: 100 pA, 50 ms (top), or 200 pA, 50 ms (bottom). (C) Summary of LY379268 effects on the early component of depression. (D) Summary of LY379268 effects on LTD magnitude. Data are normalized to the average baseline EPSC amplitude and shown as mean ± SEM.

Fig. 2. mGlu2-LTD is impaired by CIE exposure during late adolescence and is rescued by an mGlu2 PAM. (A, C) Time course of LY379268 (100 nM, 5 min) effects on EPSC amplitudes recorded from the DLS in slices from air-exposed or CIE-exposed mice in the absence (A) or presence (C) of the mGlu2-selective PAM LY487379 (10 μM, present throughout recording); n = 4–9 cells per group. (B, D) Sample traces from baseline (left), early depression (middle), and long-term depression (right) from representative experiments in presence of vehicle (B) or LY487379 (D). Scale bars: 100 pA, 50 ms (B, top, and D, top and bottom) or 200 pA, 50 ms (B, bottom). (E) Summary of LY379268 effects on the early component of depression. (F) Summary of LY379268 effects on LTD magnitude. *p < 0.05, Tukey’s post hoc comparison. Data are normalized to the average baseline EPSC amplitude and shown as mean ± SEM.
CIE effects on mGlu2 expression in adolescent mice depression. Several scenarios resulting in decreased receptor function could contribute to alcohol-mediated impairment of mGlu2-LTD in the striatum. Notably, reduced receptor expression would be predicted to decrease receptor efficacy and could explain the impaired expression of mGlu2-LTD following alcohol exposure. Because the electrical stimulation used in our electrophysiology recordings evokes glutamate release from a heterogeneous population of inputs arising from various cortical regions and the thalamus, we selected two prominent cortical input regions to the DLS (primary motor cortex and anterior insular cortex), one major DMS input region (medial prefrontal cortex), and the midline thalamus for evaluation of Grm2 levels following CIE exposure. Using reverse transcription followed by quantitative PCR, we did not find evidence that CIE exposure reduced Grm2 expression in any evaluated region (Fig. 6). However, this approach had several limitations that could prevent observation of a relevant decrease in gene expression. First, we did not perform an exhaustive assessment of Grm2 expression across the numerous cortical inputs that could be affected. Second, it is possible that alcohol decreases Grm2 expression in a subpopulation of cortical or thalamic neurons that project to the striatum; therefore, we would not have the required anatomical resolution in our tissue punches to observe more restricted effects on expression. Third, it is possible that downregulation of mGlu2 could occur at the protein rather than mRNA level. Thus, we also evaluated mGlu2 protein expression in the DLS and DMS of adolescent air-exposed and CIE-exposed mice. First, we evaluated the specificity of a monoclonal antibody (Cell Signaling Technology) raised against the extracellular loops of mGlu2. In both DLS and DMS of air-exposed and CIE-exposed mice, this antibody detected two prominent peaks at 118 and 180 kDa, consistent with the known molecular weights of mGlu2, with little to no immunoreactivity at lower molecular weights (Fig. 7). Despite confirmation that mGlu2 mRNA was undetectable in mGlu2 knockout mice (Fig. 7A), we found that ~17% of the signal measured in striatal samples from wild-type mice was still present in mGlu2 knockout mice (Fig. 7B), indicating modest off-target binding of this antibody. Because no other commercially available antibody we tested could reliably and specifically detect mGlu2 (data not shown), we proceeded to measure mGlu2 expression in the DLS and DMS of air-exposed and CIE-exposed mice using this antibody. We did not

Fig. 3. Adolescent CIE-induced impairment of mGlu2-LTD does not require prolonged withdrawal. (A) Time course of LY379268 (100 nM, 5 min) effects on EPSC amplitudes recorded from the DLS in slices from air-exposed or CIE-exposed mice; n = 6 cells per group. (B) Sample traces from baseline (left), early depression (middle), and long-term depression (right) from representative experiments. Scale bars: 100 pA, 50 ms (top) or 50 pA, 50 ms (bottom). (C) Summary of LY379268 effects on LTD magnitude. *p = 0.0072, unpaired t test. Data are normalized to the average baseline EPSC amplitude and shown as mean ± SEM.

Fig. 4. Acute application of ethanol to slices does not impair mGlu2-LTD. (A) Time course of LY379268 (100 nM, 5 min) effects on EPSC amplitudes recorded from the DLS in the presence of ethanol (40 mM, slices pretreated for at least 1 h prior to recording and maintained throughout recording); n = 7. Data are normalized to the average baseline EPSC amplitude and shown as mean ± SEM. (B) Sample traces from baseline (left), early depression (middle), and long-term depression (right) from a representative experiment. Scale bars: 200 pA, 50 ms.
find evidence of altered levels of mGlu2 protein in either the DLS or DMS of CIE-exposed mice compared with air-exposed controls (Fig. 7C–F). Based on these results, it is unlikely that alcohol-induced changes in mGlu2 expression at either the transcription or protein level are a major contributor to alcohol-induced disruption of mGlu2 function in the dorsal striatum.

Discussion

In the present study, we determined that mGlu2-LTD in the DLS is disrupted after a short withdrawal period only when CIE is administered during adolescence. Mice were still in the late adolescent stage when we assessed alcohol effects on mGlu2-LTD; thus, to fully understand the consequences of adolescent alcohol-induced deficits in striatal plasticity, future studies will be needed to determine whether these effects persist into adulthood following adolescent exposure or whether plasticity is only impaired transiently with this treatment regimen. Adolescent alcohol exposure has been shown to cause persistent effects on both physiology and behavior measured in adulthood across a number of brain regions and behavioral domains (Crews et al., 2016; Spear & Swartzwelder, 2014). For example, alcohol administration during adolescence decreases tonic GABA currents, increases NMDA receptor-mediated currents, and decreases stimulation thresholds for induction of long-term potentiation in the hippocampus (Fleming, Acheson, Moore, Wilson, & Swartzwelder, 2012; Risher et al., 2015; Swartzwelder, Park, & Acheson, 2017). In the adult prefrontal cortex, dopamine and GABA transmission are disrupted following adolescent alcohol exposure (Centanni, Burnett, Trantham-Davidson, & Chandler, 2017; Trantham-Davidson et al., 2017). Imaging studies have demonstrated that adolescent alcohol exposure causes persistent alterations in resting-state functional connectivity, particularly in frontostriatal circuits relevant to selection of action strategies (Broadwater et al., 2018). Behaviorally, adolescent alcohol exposure is associated with persistent increases in voluntary alcohol consumption and enhanced rewarding and reinforcing effects of alcohol during adulthood (Alaux-Cantin et al., 2013; Broadwater, Varlinskaya, & Spear, 2013; Fernandez, Stewart, & Savage, 2016; Gilpin, Karanikas, & Richardson, 2012; Serlin & Torregrossa, 2015; Toalston et al., 2015). In addition, adolescent alcohol exposure increases adult sensitivity to alcohol-induced learning deficits (Risher et al., 2013; White, Chia, Levin, & Swartzwelder, 2000). Currently, the implications of disinhibited DLS function during adolescence are less clear. Interestingly, adolescent rats have been reported to be resistant to the development of habitual response strategies (Serlin & Torregrossa, 2015), despite consuming more ethanol than adults during self-administration. However, in the same study, rats
that initiated alcohol self-administration during adolescence showed higher intake of self-administered alcohol once they reached adulthood, compared with rats that began self-administration during adulthood followed by the same abstinence period. Thus, it is possible that adaptations in mGlu2-LTD in the DLS are more likely to influence behavioral responses to alcohol later in life than within the adolescent period.

In addition to age-specific effects, variables such as sex and strain of the experimental subjects are likely to impact vulnerability to alcohol-induced adaptations in presynaptic regulation of neurotransmission. With regard to sex, there are well-known differences between female and male mice in alcohol intake and other alcohol-related behaviors (Erol & Karpvyak, 2015; Guizzetti et al., 2016). The current study was limited to male subjects, and further studies will be necessary to determine the impact of adolescent alcohol exposure on mGlu2 function in female mice. Furthermore, exploration of alcohol-induced adaptations in GPCR function in rats or different mouse strains could provide additional insight into common or divergent effects of ethanol on mGlu2 function, as different mouse strains used to study alcohol-related behaviors exhibit divergent responses to the rewarding, reinforcing, aversive, and stimulating effects of alcohol (Halladay, Kocharian, & Holmes, 2017). Differential adaptations in synaptic modulation in response to alcohol exposure could contribute to observed strain differences on a variety of alcohol-related behaviors.

Several preclinical studies in rats and mice have implicated the group II mGlu receptor mGlu2 as a target for reducing alcohol seeking and consumption. For example, genetic analysis revealed that selectively bred alcohol-prefering (P) rats are uniformly homozygous for a variant of Grm2 harboring a premature stop codon (Grm2*407), and this allele is prevalent in other lines of rats selectively bred for high alcohol consumption as well (Wood et al., 2017; Zhou et al., 2013). Pharmacological inhibition of group II mGlu receptors in rats increases alcohol self-administration, and genetic deletion of Grm2 in mice increases alcohol consumption and preference in a two-bottle choice alcohol drinking paradigm (Zhou et al., 2013), suggesting that endogenous activation of mGlu2 constrains alcohol-consuming behaviors under normal conditions. Pharmacological studies using agonists of mGlu2 and mGlu3 or positive allosteric modulators selective for mGlu2 show that activation of these receptors decreases voluntary drinking (Griffith, Hau, Hazlamb, Ramachandra, & Becker, 2014), reduces the discriminative stimulus properties of alcohol (Cannady, Grondin, Fisher, Hodge, & Besheer, 2011), decreases alcohol self-administration, and reduces conditioned reinstatement of alcohol seeking following extinction (Augier et al., 2016; Backstrom & Hyttia, 2005; Kufahl, Martin-Fardon, & Weiss, 2011; Windisch & Czachowski, 2018; Zhao et al., 2006). In addition, downregulation of Grm2 has been reported in the infralimbic cortex in a rat model of alcohol dependence, and lentivirus-mediated restoration of mGlu2 expression reduced conditioned reinstatement of alcohol seeking in alcohol-dependent rats (Meinhardt et al., 2013). Interestingly, the same study reported reduced Grm2 levels in the anterior cingulate cortex in postmortem samples obtained from humans diagnosed with AUD when compared with age- and
postmortem interval-matched controls, suggesting that an mGlu2 hypofunction hypothesis has translational relevance (Meinhardt et al., 2013). Collectively, these findings support the idea that reduced mGlu2 function could promote high levels of drinking, and that enhancing mGlu2 activity could reduce alcohol intake and seeking in humans. However, little is known about mGlu2 effects in specific circuits relevant to habitual alcohol seeking and consumption. Our report that alcohol impairs mGlu2-LTD in the DLS extends these findings to implicate circuitry specifically relevant to habitual response strategies that could support uncontrolled alcohol seeking following adolescent alcohol exposure.

We used electrical stimulation of glutamatergic inputs to MSNs to broadly assess the impact of alcohol on mGlu2 function on inputs to each subregion of the dorsal striatum. The specific glutamatergic inputs to the striatum that are impacted by adolescent CIE exposure remain to be identified, and the subset of inputs affected could have important implications for the behavioral relevance of impaired mGlu2-LTD. Few investigations have focused on the relevance of reduced mGlu2 expression or function in specific cortical regions. Reduced expression in the infralimbic cortex has been associated with increased vulnerability to cue-induced reinstatement of alcohol seeking (Meinhardt et al., 2013). Conversely, efforts to identify a role for prelimbic cortex mGlu2 in voluntary drinking demonstrated that 40% knockdown of mGlu2 from this region was insufficient to increase drinking behavior in rats (Ding et al., 2017). Further studies focused on cortical regions projecting to the DLS will be necessary to pinpoint the affected cortical or thalamic afferents and to determine the behavioral ramifications of disinhibition of affected striatal inputs.

Our efforts to measure downregulation of mGlu2 expression at both the mRNA and protein levels did not produce evidence that reduced receptor expression can account for alcohol-induced impairment of mGlu2-LTD. This finding is in contrast to the report by Meinhardt et al. (2013) that CIE exposure combined with alcohol self-administration reduces mGlu2 expression in the infralimbic cortex of alcohol-dependent rats. Our medial PFC samples contained, but were not limited to, infralimbic cortex. Therefore, differences in the subregions evaluated, as well as differences in species and alcohol-exposure paradigms, could explain this discrepancy. Several alternative mechanisms for reduced receptor function could underlie alcohol-induced impairment of mGlu2-LTD. For example, alcohol could disrupt coupling of mGlu2 to heterotrimeric G proteins or downstream signaling molecules that regulate LTD. This explanation is particularly attractive in light of our finding that in the DLS, alcohol differentially impacts the early vs. long-term inhibition of glutamate transmission by mGlu2. These short- and long-term changes are likely to involve different complements of presynaptic signaling events. Further, reduced downstream signaling provides a parsimonious explanation for the effects of alcohol on other presynaptic GPCRs in the striatum, including CB1 receptors and μ-opioid receptors. Another intriguing possibility is that alcohol disrupts the subcellular localization of mGlu2 such that efficacy is impacted without an accompanying reduction in expression. Nanoscale localization of CB1 receptors in relation to the active zone and downstream effectors has been proposed as a critical determinant of neuromodulatory efficacy at hippocampal synapses (Dudok et al., 2015). mGlu2 efficacy within presynaptic terminals could be similarly impacted by subtle differences in subcellular localization following alcohol exposure.

From a translational perspective, our finding that acute treatment of slices with a selective PAM of mGlu2 can rescue mGlu2-LTD after alcohol exposure has important implications for the consideration of mGlu2 as a therapeutic target for AUDs. The authors of the previous study reporting an alcohol-induced downregulation of mGlu2 reasoned that reductions in mGlu2 expression would preclude the use of drugs targeting mGlu2 in AUDs due to insufficient availability of the target (Meinhardt et al., 2013). Contrary to this assertion, we demonstrated that an mGlu2 PAM can fully restore alcohol-induced deficits in mGlu2-LTD in the dorsal striatum. Although our PAM rescue did not occur in the context of reduced receptor expression, others have demonstrated that in the absence of receptor reserve due to reduced expression, PAMs of mGlu receptors can increase the maximal efficacy of receptor activation to rescue impaired synaptic modulation (Gogliotti et al., 2017). Thus, pharmacological targeting of mGlu2 to alleviate alcohol-induced shifts toward maladaptive action strategies related to DLS function remains a viable therapeutic strategy. Future studies directly examining the role of impaired mGlu2 function in alcohol-induced behavioral adaptations such as increased use of habitual action strategies, and the ability of mGlu2 PAMs to reverse maladaptive behaviors, will provide insight into the behavioral relevance of disrupted mGlu2-LTD in the dorsal striatum.

Declaration of competing interest

None.

Acknowledgments

We thank Drs. Karina Possa Abrahao, Matthew Pava, David Kupperschmidt, and Armando Salinas for feedback and technical advice. We also thank Carolyn Fergusson and Guoxiang Luo for excellent technical support. This work was supported by the NIAAA Division of Intramural Clinical and Biological Research grant ZIA AA000416 (D.M.L.), NIAAA extramural grants AA10422 and AA020889 (G.E.H.), and K99 AA025403 (K.A.J.). K.A.J. and D.M.L. conceived the project and wrote the manuscript. K.A.J. performed and analyzed the electrophysiology and qPCR experiments. D.J.L. performed and analyzed mGlu2 protein expression experiments and edited the manuscript. G.E.H. produced mGlu2 knockout mice and edited the manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.alcohol.2019.06.003.

References

Corbit, L. H., Nie, H., & Janak, P. H. (2012). Habitual alcohol seeking: Time course and
Fleming, R. L., Acheson, S. K., Moore, S. D., Wilson, W. A., & Swartzwelder, H. S.
ganglia circuit roles in effects of abused drugs. Genes, Brain and Behavior, 16,
Griffin, W. C., 3rd, Haun, H. L., Hazelbaker, C. L., Ramachandra, V. S., & Becker, H. C.
(2014). Increased extracellular glutamate in the nucleus accumbens promotes
HALL, 108036
Halladay, L. R., Kocharian, A., & Holmes, A. (2017). Mouse strain differences in
punished ethanol self-administration. Alcohol, 58, 83–92. https://doi.org/10.1016
Hunnibuct, B. J., Jongbloets, B. C., Birdsong, W. T., Gertz, K. J., Zhong, H., & Mao, T.
(2016). A comprehensive excitatory input map of the striatum reveals novel
doi.org/10.3389/fnneu.2016.00264.
inhibits thalamocortically-driven glutamate and dopamine release in the dorsal
neuropsychopharmacology, 117, 114–123. https://doi.org/10.1007/s00220-017-5183-
metabotropic glutamate receptors induced long term depression in mouse
Kaufal, P. R., Martin-Fardon, R., & Weiss, F. (2011). Enhanced sensitivity to attenua-
tion of conditioned reinstatement by the mGlur2/3 agonist 1S,2S(−)-2-amino-4-(3-
Hindatty, E., & Karpyak, V. M. (2015). Inhibition of presynaptic calcium transients in
cortical inputs to the dorsolateral striatum by metabotropic GABA(A) and mGlur2/3 receptors. The Journal of Physiology, 593, 2295–2310. https://
calcium transients in cortical inputs to the dorsolateral striatum of mice with a history of ethanol dependence. Neuropsychopharmacology, 36, 2762–2773. https://
Meinhardt, M. W., Hanson, A. C., Perea-Lenz, S., Bauder-Wenz, C., Stuhlin, O., Heilig, M., et al. (2013). Rescue of infirmial mGlur2/3 deficits restores control
opioid receptor-mediated long-term depression at insular cortex inputs to
Nickola, D. J., & Conn, P. J. (2014). Development of allosteric modulators of GPCRs for
Renteria, R., Baltz, E. T., & Grenel, C. M. (2018). Chronic alcohol exposure disrupts
top-down control over basal ganglia action selection to produce habits. Nature
Communications, 9, 211. https://doi.org/10.1038/s41467-017-02615-9.
Risher, M. L., Fleming, R. L., Boutros, N., Semenova, S., Wilson, A. W., Levin, E. D.,
et al. (2013). Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: Radial-arm maze performance and operant food
functional hippocampal abnormalities into adulthood. Alcoholism: Clinical and
Serlin, H., & Torregrossa, M. M. (2015). Adolescent rats are resistant to forming
Spear, L. P. & Swartzwelder, H. S. (2014). Adolescent alcohol exposure and persis-
tence of adolescent-typical phenotypes into adulthood: A mini-review. Neuro-
enhances NMDA receptor-mediated currents in hippocampal neurons: Reversal by
gabapentin. Scientific Reports, 7, 13133. https://doi.org/10.1038/s41598-017-
858.
Toalston, J. E., Deegan, A. J., Jr., Hauser, S. R., Engleman, E. A., Bell, R. L., Murphy, J. M., et al. (2015). The reinforcing properties of ethanol are quanti-
tatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin,
doi.org/10.1016/j.alcohol.2015.04.007.
Trantham-Davidson, H., Centanni, S. W., Gari, S. C., New, N. W., Mulhalland, P. J.,
et al. (2017). Binge-like alcohol exposure during adolescence disrupts dopamine
neurotransmission in the adult rat striatum. Alcoholism: Clinical and
ethanol exposure in adolescent and adult rats: Differential impact on subse-
quent responsivity to ethanol. Alcoholism: Clinical and Experimental Research,
24, 1251–1256.
Windisch, K. A., & Chacowsky, C. L. (2018). Effects of group II metabotropic gluta-
mate receptor modulation on ethanol- and sucrose-seeking and consumption in

