Mutation of the inhibitory ethanol site in GABA_A ρ1 receptors promotes tolerance to ethanol-induced motor incoordination

Yuri A. Blednov^a, Cecilia M. Borghese^a, Carlos I. Ruiz^a, Madeline A. Cullins^a, Adriana Da Costa^a, Elizabeth A. Osterndorff-Kahanek^a, Gregg E. Homanics^b, R. Adron Harris^a,*

^aThe University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
^bUniversity of Pittsburgh, Departments of Anesthesiology, Neurobiology, and Pharmacology & Chemical Biology, Pittsburgh, PA 15261, United States

Abstract

Genes encoding the ρ1/2 subunits of GABA_A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1(T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA_A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

GABA_A receptors are molecular targets for the action of many drugs in the brain, including barbiturates, benzodiazepines, neurosteroids, and intravenous/volatile anesthetics. Like these drugs, alcohol (ethanol) enhances the function of classical GABA_A homomeric receptors (composed mainly of two α, two β, and one γ or δ subunit), but the response of GABA_A ρ receptors to ethanol is distinct. Homomeric receptors formed from ρ1 subunits are inhibited by low concentrations of ethanol (Mihic and Harris, 1996), and introduction of a T6'Y mutation in the second transmembrane helix of ρ1 eliminates the inhibitory effect (Borghese et al., 2016).

Although roles for some GABA_A subunits in the in vivo effects of ethanol have been examined (Blednov et al., 2011, 2013; Boehm et al., 2004; Kumar et al., 2009; Lobo and Harris, 2008), ρ subunits have not been well studied in brain. In contrast to the retina, where they were first discovered and are highly expressed (Cutting et al., 1991, 1992), ρ receptors are present in low levels in the central nervous system (Boue-Grabot et al., 1998; Johnston, 2002). Alcohol addiction researchers became increasingly interested in GABA_A ρ receptors when a family-based association analysis linked GABRR1 and GABRR2 (genes encoding ρ1 and ρ2, respectively) with alcohol dependence in humans (Xuei et al., 2010). In addition, a genetic correlation was found between the level of ρ1 expression in the nucleus accumbens and ethanol consumption and motor activation in recombinant inbred mice [genenetwork.org; based on (Demarest et al., 2001; Gill et al., 1996)]. Furthermore, genetic deletion of the
p1 subunit in mice altered several ethanol-related behaviors (Blednov et al., 2014). For example, reduced ethanol consumption and preference and longer duration of ethanol-induced loss of righting reflex (LORR) were observed in p1 knockout (KO) male mice. Interestingly, both male and female KO mice showed faster recovery from acute ethanol-induced motor incoordination and were less sensitive to the development of ethanol-induced conditioned taste aversion (CTA). Some of these behavioral phenotypes were also observed in wild-type (WT) mice after administration of the p1 antagonist, (S)-4-amino-cyclopent-1-enyl butylphosphonic acid (Blednov et al., 2014).

Based on the discovery of a specific ethanol site in GABA\(_{\text{A}}\) p1 receptors and in vivo evidence for p1 in ethanol responses in animal models, we generated p1 (T6Y) knockin (KI) mice and examined the ethanol-related behaviors that were altered in p1 KO mice (Blednov et al., 2014). This allows a comparative study of ethanol's behavioral effects in a genetic model targeting a known ethanol site without the loss of receptor function and potential compensatory changes in other genes that may complicate the KO model. We determined that levels of p1 and p2 are not altered in the cerebellum of WT and p1 KI mice. In addition, our findings show that mutation of the inhibitory ethanol site in p1 does not alter normal channel function, but is important for the development of acute tolerance to ethanol-induced motor impairment.

2. Materials and methods

2.1. Two-electrode voltage clamp in Xenopus oocytes

The materials and methods were described in detail in a previous publication (Borghese et al., 2016). Briefly, the responses of human WT and mutant GABA\(_{\text{A}}\) p1 receptors expressed in oocytes were studied using two-electrode voltage clamp. Oocytes were placed in a chamber perfused with ND96 buffer (96 mM NaCl, 2 mM KCl, 1 mM CaCl\(_2\), 1 mM MgCl\(_2\), 5 mM HEPES, pH 7.5), and voltage-clamped at −70 mV. GABA applications lasted for 30–150 s and the interval between applications was 5–15 min. Drug effects were reversible, and control GABA responses remained relatively constant between applications.

Modulators (ethanol, zinc) were pre-applied for 1 min and then co-applied with GABA. The application sequence for the WT and mutant p1 receptors was as follows: maximal GABA concentration (to obtain maximal response, EC\(_{\text{100}}\)), EC\(_{20}\) GABA, EC\(_{20}\) GABA, pre-application of modulator immediately followed by a co-application with EC\(_{20}\) GABA, EC\(_{20}\) GABA, repeat with different concentration/modulator. The response to GABA in the presence of the modulator was expressed as a % change compared to the mean of the previous and subsequent GABA responses (either EC\(_{20}\) GABA or maximal GABA responses). GABAergic partial agonists (β-alanine and taurine) were applied alone at maximal concentrations, and the responses induced were expressed as the percentage of the maximal GABA response observed in that oocyte. Statistical analysis was performed using Prism 7 (GraphPad Software, Inc., La Jolla, CA, USA), and statistical significance was determined using t-tests or two-way ANOVA.

2.2. p1 knockout mice

Mice lacking the p1 subunit of the GABA\(_{\text{A}}\) receptor, B6: 129S4-Gabra1\(_{\text{tm1Llu}}\)/J (stock # 010535), were purchased from The Jackson Laboratory (Bar Harbor, ME), and the colony was maintained by heterozygous breeding. After weaning, mice were housed in the Animal Resources Center at The University of Texas at Austin with ad libitum access to rodent chow and water with 12-h light/dark cycles (lights on at 7:00 a.m.). Male and female mice between 8 and 12 weeks of age were used. This was approved by the university's Institutional Animal Care and Use Committee and adhered to NIH guidelines for the care and use of laboratory animals. Mice were genotyped after weaning. DNA from a small piece of the tail was extracted using SYBR-labeled PCR followed by melting curve analysis. Two different assays were used to detect each allele [WT primer set 1: ATGTGCGTCTCCAGAAATG (F), CTTTCTAGATGCGTCTCATGAAAC (R); WT primer set 2: CAAGTTAACGG-GAGTTGCC (F), GACTCCTCACCAGTGTTTCA (R); KO primer set 1: TTGGTTGAGAGCCTATTTCC (F), CTTCCCGCTTAGCAGACAC (R); KO primer set 2: AGACAAATCCGCGTCCTGAT (F), AGTGA-CACGTCGACGACAG (R).

2.3. CRISPR/Cas9 and repair template production

A sgRNA targeting p1 exon 9 in the intended mutation site was identified using the CRISPR Design Tool (Hsu et al., 2013). Two overlapping PCR primers (F: GAAATTATATCAGCTACA-TAGTGTTATGGCCAGACATCCAGTTTTAGCTGAAATATGC; R: AAAACAGCAATATCCTGGTCCATTCTTAACTTGCTATTTCTAGCTCTAAAAC) were used to generate a T7 promoter containing sgRNA template as described (Bassett et al., 2013). This template was transcribed in vitro using a MEGAscript kit (Ambion, Inc., Austin, TX). The Cas9 coding sequence was amplified from pX330 (Cong et al., 2013) using a T7 promoter containing forward primer (tattacgactcata-tagttggagagctgctctgat) and reverse primer (ccagctgctttatcaggtgagaggtgggtggagaggtat), and subcloned into pH2-TOPO. This plasmid was linearized with EcoRI, in vitro transcribed, and polyA-tailed using the mMessage mMachine T7 Ultra Kit (Ambion). Following synthesis, the sgRNA and Cas9 mRNA were purified using the MEGAclear Kit (Ambion), ethanol precipitated, and resuspended in DEPC-treated water. A 120-nucleotide single stranded DNA repair template oligo harboring the desired mutations in exon 9 of p1 was purchased as Ultrimera DNA (Integrated DNA Technologies, Coralville, IA).

2.4. Production of p1 knockout mice

sgRNA (25 ng/μl), Cas9 mRNA (50 ng/μl), and repair oligo (100 ng/μl) were combined in embryo injection buffer (10 mM Tris, pH 7.4, 0.1 mM EDTA), aliquoted, and stored at −80 °C until use. C57BL/6J one-cell embryos were collected from super-ovulated females and cultured in KSOM at 37 °C in 5% CO\(_2\)/95% air. Embryos were briefly transferred to M2 medium, and the nucleic acid mixture was injected into the cytoplasm as described (Yang et al., 2014). Embryos that survived injection were transferred to the oviduct of day 0.5 postcoitum pseudopregnant CD-1 recipient females. Pups resulting from injected embryos were screened for DNA sequence changes in exon 9 of the p1 gene by PCR/DNA sequence analysis. Briefly, a 388 bp amplicon spanning exon 9 was PCR amplified with forward (AGATGACCGCCGACAGA) and reverse (CTCTCAGGTAAGCTGGT) primers. PCR products were sequenced directly or subcloned into pCR2.1-TOPO (Invitrogen, Carlsbad, CA) and sequenced to verify that the T298Y (T6Y) mutation was present.

2.5. Off-target analysis

The sgRNA sequence (GTTTATGCCAGGCGCACACCA) was run through the Off-Targets tool of the Cas9 Online Designer site (Guo et al., 2015). The top 8 predicted off-targets (Supplemental Table S1) were amplified from male founder mouse #4110 DNA and sequenced.
2.6. Mouse genotype analysis

Mice were genotyped in-house using PCR followed by HincII restriction fragment length polymorphism analysis or mouse tail tips were shipped to the Genotyping Center of America, where DNA was extracted and the KASP genotyping system (LGc Genomics, Middlesex, UK) was used with a proprietary assay.

2.7. RT-PCR and sequence analysis of transcripts

Cerebellar tissue from 16 WT (n = 8 females, n = 8 males) and 16 p1 KI (n = 8 females, n = 8 males) mice was dissected, flash-frozen in liquid N₂, and stored at -80 °C. Total RNA was isolated using the MagMax-96 for microarrays kit (Ambion). RNA concentration and purity were determined by UV spectrometry (Nanodrop; Thermo Scientific), and overall RNA integrity was assessed using a 2200 TapeStation (Agilent Technologies, Santa Clara, CA). Portions of the p1 transcript were PCR-amplified from cDNA of one male and one female of each homozygous genotype using five different primer sets (Supplemental Table S2). PCR products were analyzed on 2% agarose, excised from the gel with a clean razor blade and purified and analyzed on 2% agarose, excised from the gel with a clean razor blade and purified on a Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI). Purified PCR products were sequenced in both directions using the amplification primers.

2.8. RT-PCR measurement of p receptors in cerebellum

qPCR was performed in triplicate for 90 ng of each cDNA (see above) using SsoAdvanced Universal Probes Software, according to manufacturer's instructions (Bio-Rad, Hercules, CA). FAM-labeled TaqMan Gene Expression Assays (Applied Biosystems) were used to amplify Gabr1 (Mm01212386_m1), Gabr2 (Mm00433507_m1), and Gusb (Mm01197699_s1). RT-qPCR results were analyzed with CFX Manager, version 3.1 (Bio-Rad), using the single threshold Cq and to amplify TaqMan Gene Expression Assays (Applied Biosystems) were used manufacturer's instructions (Bio-Rad, Hercules, CA). FAM-labeled broth receptors in cerebellum

2.9. Recovery from ethanol-induced motor incoordination

Mice were trained on a fixed-speed rotarod (Economex; Columbus Instruments, Columbus, OH) at 10 rpm, and training was considered complete when mice were able to remain on the rotarod for 60 s. Every 15 min after injection of ethanol (2 g/kg, i.p.), each mouse was placed back on the rotarod and latency to fall was measured until the mouse was able to stay on the rotarod for 60 s.

2.10. Acute functional tolerance

Acute functional tolerance (AFT) to the motor ataxic effects of ethanol was measured using the two-dose method originally designed by (Erwin and Dietrich, 1996). Ethanol-naive mice were trained to balance on a fixed-speed rotarod (10 rpm) for a 60-s period. After basal training, mice were injected with ethanol (1.75 g/kg, i.p.) and placed back on the rotarod until they fell off. Mice were tested in 5-min intervals until they regained the ability to balance on the rotarod for 60 s. Once this was achieved (t1), a retro-orbital blood sample was collected to measure blood ethanol concentration (BEC1). Mice were then immediately given a second ethanol injection (2 g/kg, i.p.). After losing the ability to remain on the rotarod, mice were tested in 5-min intervals until they regained the ability to balance for 60 s (t2). Then a second blood sample was collected for BEC determination (BEC2). BECs were measured as described below. AFT was defined as the difference in BEC at t2 versus t1 (BEC2 - BEC1).

2.11. Two-bottle choice ethanol drinking

The 24 h two-bottle choice protocol was carried out as previously described (Blednov et al., 2003, 2014). Mice were allowed to acclimate for 1 week to individual housing. Two drinking tubes were continuously available, food was available ad libitum, and mice were weighed every 4 days. After 4 days of water consumption (both tubes), mice were given access to water and a series of increasing ethanol concentrations (3–15% ethanol (v/v), each concentration was given for 4 days). Tube positions were changed daily to control for potential side preferences, and tubes were weighed daily before and after removal from the experimental cages. The quantity of ethanol consumed (g/kg body weight/24 h) was calculated for each mouse, and values were averaged for each concentration of ethanol tested. Evaporation/spillage estimates were calculated daily from two bottles placed in an empty cage (one bottle contained water and the other contained the appropriate ethanol solution). Statistical analysis of behavioral data was performed using Prism (GraphPad Software, Inc.), and statistical significance was determined using two-way ANOVA and Bonferroni post hoc tests.

2.12. Conditioned taste aversion

Mice were adapted to a water restriction schedule (2 h of water/day) over a 7-day period. At 48 h intervals over the next 10 days, mice had access to a solution of saccharin (0.15% w/v sodium saccharin in tap water) for 1 h. Immediately after access to saccharin, mice received injections of saline or ethanol (2.5 g/kg, i.p.). Mice had 30 min access to tap water 5 h after each saccharin-access period to prevent dehydration. On intervening days, mice had 2 h continuous access to water at standard times in the morning. Reduced consumption of the saccharin solution is used as a measure of CTA.

2.13. Loss of righting reflex

Sensitivity to the depressant effects of ethanol (3.8 g/kg, i.p.) and ketamine (175 mg/kg, i.p.) was determined using the duration of LORR (sleep time) assay in mice. When mice became ataxic, they were placed in the supine position in V-shaped plastic troughs until they were able to right themselves three times within 30 s. Sleep time was defined as the time from being placed in the supine position until they regained their righting reflex.

2.14. Ethanol clearance

Animals were injected with a single dose of ethanol (4 g/kg, i.p.), and blood samples were taken from the retro-orbital sinus 30, 60, 120, 180, and 240 min after injection. Samples (~20 μl) were collected into capillary tubes and centrifuged for 6 min at 3100 g in a Haematospin 1400 centrifuge (Analox Instruments, London, UK). Plasma samples were stored at -20 °C until BECs were determined in 5-μl aliquots using an AM1 Alcohol Analyzer (Analox Instruments). The machine was calibrated every 15 samples using an industry standard, and BECs were determined using commercially available reagents according to the manufacturer's instructions. Samples were averaged from duplicate runs and expressed as mg/dl.
and taurine) that are also found in Xenopus oocytes. Increasing concentrations of ethanol were applied to WT and mutated p1 receptors expressed in oocytes, and effects on EC50 GABA responses were recorded. Data are presented as mean ± SEM (error bars are smaller than symbols). Data were analyzed using two-way ANOVA with Sidak’s multiple comparisons post hoc test: **p < 0.01, ****p < 0.0001 versus WT (n = 5 oocytes).

B. Maximal GABA-induced currents 3–4 days after injection (n = 13–18). Two-way ANOVA did not indicate a significant interaction or a difference between WT and mutant receptors.

3. Results

3.1. Ethanol modulation of p1 receptors in Xenopus oocytes

WT and mutated GABA_A_ρ1 receptors were expressed in *Xenopus laevis* oocytes, and the effects of increasing concentrations of ethanol (20–200 mM) on EC50 GABA responses were recorded (Fig. 1A). Ethanol inhibited GABA responses in a concentration-dependent manner in WT p1 receptors as previously reported (Mihic and Harris, 1996). In contrast, 20–200 mM ethanol potentiated GABA responses in a concentration-dependent manner in p1(T6’Y) receptors (two-way repeated measures ANOVA: effect of interaction F2,24 = 103.8, p < 0.0001; effect of concentration F2,24 = 16.69, p < 0.0001; effect of receptor F1,8 = 402.1, p < 0.0001) in agreement with previous results using 100–200 mM ethanol (Borghese et al., 2016).

Although the mutation is near the pore of the channel, the sensitivity to GABA was not altered (GABA EC50 = 0.69 for both p1 and p1(T6’Y), 95% confidence intervals 0.65 to 0.75 and 0.60 to 0.79, respectively) (Borghese et al., 2016). The maximal GABA-induced current was also not different in p1 and p1(T6’Y) receptors (Table 1). To further examine overall receptor function, we tested the endogenous modulator, zinc, and partial agonists (β-alanine and taurine) that are also found in vivo. Unlike modulation by ethanol, the effects of zinc and β-alanine were similar in p1(T6’Y) and WT receptors (Table 1). Taurine’s partial agonist activity was significantly increased in p1(T6’Y) receptors, but at 1 mM it only activated the channel by 3% of the response evoked by a maximal GABA concentration, suggesting that the marginal increase in mutant receptors would not impact receptor function compared to WT responses.

3.2. Production of p1 KI mice

The CRISPR/Cas9 RNA guided nuclease and a single stranded DNA oligonucleotide were used to mutate the threonine codon at position 298 of p1 to tyrosine (required ACC to TAT substitutions) as illustrated in Fig. 2A. In addition, a silent single base substitution (C to T) in codon 301 was made for genotyping that did not alter the encoded leucine but did create a HincII restriction site in the KI allele. PCR/DNA sequence analysis of p1 exon 9 revealed that of the 24 mice derived from injected embryos, 11 were WT, 10 had indels, and 3 harbored KI alleles. The KI founders were as follows. Founder 4109 (a female) was heterozygous for WT and the KI allele including the silent mutation. Founder 4110 (a male) appeared to harbor 3 alleles: WT, a perfect KI, and a KI allele that lacked the silent mutation.

Analysis of the predicted top 8 sgRNA off-target mutation sites in Founder mouse #4110 revealed no off-target mutations in 7 of these sites. However, off-target site #4 (chromosome 19) was found to harbor an indel (data not shown).

Founder 4110 was mated to C57BL/6J females to establish the line reported here. All offspring were genotyped for p1 using the PCR/restriction fragment length polymorphism approach illustrated in Fig. 2B. From 25 offspring derived from this founder, 4 were WT or harbored the KI allele that lacked the silent mutation (these cannot be distinguished by this RFLP assay), 11 were heterozygous KI, and 10 were heterozygous WT with a KI allele that also had an ~80 bp duplication (designated as WT/KI*; see Fig. 2B). Note that following digestion with HincII, WT produces 51 and 337 bp fragments. In contrast, digestion of the KI allele with HincII produces fragments of 51, 130, and 207 bp. The KI with duplication produced bands of 51, 207, and ~417 bp. All WT/KI animals were also analyzed for off-target site #4. Five of 11 p1 WT/KI animals were found to be WT at off-target site #4; 6 animals were mutated at this locus and were discarded. The p1 exon 9 containing amplon was derived from all WT/KI F1 animals that were shipped from Pittsburgh to the University of Texas at Austin for establishment of a breeding colony. Sequencing of the KI sample, note the presence of the double peaks (marked with green *), demonstrating heterozygosity where the 4 substitutions were made.

Heterozygotes were interbred to produce homozygous and WT mice. Homozygotes of both sexes were overtly normal and grossly indistinguishable from littermates. RT-PCR products spanning exon 3 through most of exon 10 of p1 were sequenced in a male and female of each homozygous genotype. All samples produced the expected sequence with no additional alterations (data not shown).

3.3. Recovery from ethanol-induced motor impairment

When mice were trained to balance on a fixed-speed rotarod, we observed no group differences in basal training before ethanol injection and no differences in initial responses measured 15 min after injection. However, both male (effect of genotype: F1,80 = 125, p < 0.001; effect of time: F1,80 = 203, p < 0.001; time × genotype interaction: F1,80 = 21, p < 0.001) and female (effect of genotype: F1,80 = 26, p < 0.001; effect of time: F1,80 = 129, p < 0.001; time × genotype interaction: F1,80 = 5.8, p < 0.001) p1 KI mice demonstrated faster recovery than WT mice from the acute motor incoordination produced by ethanol (2 g/kg, i.p.; Fig. 3A and B).

Table 1

<table>
<thead>
<tr>
<th>Modulator/Partial agonist</th>
<th>p1</th>
<th>p1(T6’Y)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc (4 µM)</td>
<td>−49 ± 2</td>
<td>−47 ± 6</td>
<td>7</td>
</tr>
<tr>
<td>β-Alanine (1 mM)</td>
<td>37 ± 5</td>
<td>52 ± 6</td>
<td>6–7</td>
</tr>
<tr>
<td>Taurine (1 mM)</td>
<td>1.7 ± 0.3</td>
<td>3.0 ± 0.4*</td>
<td>6–7</td>
</tr>
</tbody>
</table>

Zinc inhibition of GABA responses (shown as % change of the EC50 GABA responses) and responses evoked by the partial agonists, β-alanine and taurine (shown as % of maximal GABA response), in WT and mutant p1 receptors expressed in oocytes (n = number of oocytes tested; unpaired t-test, *p < 0.05).
3.4. Acute functional tolerance to ethanol-induced motor impairment

A rotarod test was also used to assess acute, rapid tolerance to the ataxic effects of ethanol. The time to recover from motor incoordination after the first and second ethanol injections was significantly shorter in \(p1 \) KI compared with WT mice (effect of genotype: \(F_{(1,27)} = 103, p < 0.001; \) Fig. 4A). The BEC measured after the first ethanol exposure (BEC1) did not differ between genotypes, whereas BEC2 was significantly higher in \(p1 \) KI compared with WT mice (effect of genotype: \(F_{(1,27)} = 21.5, p < 0.001; \) Fig. 4B). The difference in recovery time between the second and first ethanol injections was significantly shorter in \(p1 \) KI mice compared to controls (\(p < 0.001; \) Fig. 4C). This resulted in greater AFT (defined as BEC2 - BEC1) to ataxia in KI mice compared to controls (83.7 ± 8.2 versus 36.3 ± 7.9, respectively, \(p < 0.001; \) Fig. 4D). No sex differences were found, and data from male and female mice were combined.

In our previous study of \(p1 \) KO mice (Blednov et al., 2014), we did not measure AFT to ethanol-induced motor impairment so we performed that test using KO mice in the current study. Similar to \(p1 \) KI mice, the time to recover after the first and second ethanol exposures was significantly shorter in \(p1 \) KO compared with WT mice (effect of genotype: \(F_{(1,41)} = 594, p < 0.001; \) Fig. 4E). The BEC measured after the first ethanol injection (BEC1) did not differ between genotypes, but BEC2 was significantly higher in KO...
compared with WT mice (effect of genotype: \(F_{1,14} = 11.4, p < 0.01; \) Fig. 4F). The difference in recovery time between the second and first ethanol injections was significantly shorter in KO mice compared to controls. AFT (BEC2 - BEC1) increased in KO mice compared to controls (61.5 ± 8.4 versus 37.4 ± 7.3, respectively, \(p < 0.001; \) Fig. 4G). No sex differences were found, and data from male and female mice were combined.

3.5. Ethanol consumption

In the two-bottle choice paradigm in which mice could drink either water or increasing concentrations of ethanol, no differences in the amount of ethanol consumed or preference for ethanol were found between WT and p1 KI mice of either sex (Fig. 5). Female mice drank more ethanol than males, but there were no genotype differences. p1 KI female mice demonstrated slightly reduced total fluid intake compared to WT (effect of genotype: \(F_{1,18} = 7.8, p < 0.05 \); genotype \times concentration interaction effect: \(F_{5,90} = 2.4, p < 0.05; \) Fig. 5F). There was also a trend toward reduced total fluid intake in p1 male mice, but this did not reach significance (\(F_{1,18} = 3.1, p = 0.09; \) Fig. 5C).

3.6. Conditioned taste aversion

There were no differences in consumption of saccharin during trial 0 (before conditioning) between WT and p1 KI mice, respectively (94.2 ± 5.3 and 99.1 ± 3.7 g/kg body weight for female mice; 84 ± 3.8 and 81.1 ± 2.9 g/kg body weight for male mice). In order to minimize initial fluctuations in saccharin intake and any small differences between sexes, consumption was calculated as a percentage of the trial 0 consumption for each subject by dividing the amount of saccharin solution consumed on subsequent conditioning trials by the amount of saccharin solution consumed on trial 0 (before conditioning). Ethanol-saccharin pairings reduced saccharin intake across trials compared with saline-saccharin pairings, indicating the development of CTA in male mice of both
genotypes (effect of treatment in WT males: F(1,14) = 13.9, p < 0.01; effect of treatment in KI males: F(1,18) = 4.4, p < 0.05; Fig. 6A), as well as in female mice of both genotypes (effect of treatment in WT females: F(1,12) = 24.7, p < 0.001; effect of treatment in KI females F(1,14) = 19.9, p < 0.001; Fig. 6B). No genotype differences were found between saline- or ethanol-treated groups for either sex.

3.7. Loss of righting reflex

In our previous study, ethanol and ketamine significantly prolonged the duration of LORR in p1 KO compared to WT mice (Blednov et al., 2014). However in the current study, the duration of ethanol- or ketamine-induced LORR did not differ in WT or p1 KI mice (Fig. 7A and B). Because there were no sex differences in the sedative effects of these drugs, data from male and female mice were combined.

3.8. Ethanol clearance

There were no genotype differences in BECs measured over 4 h after injection of ethanol (4 g/kg, i.p.) in male or female mice (Fig. 8A,C) and no differences in the slopes of the curves (Fig. 8B,D).

3.9. p1/p2 mRNA levels

To examine potential expression changes that could contribute to the behavioral differences between genotypes, we measured mRNA levels of p1 and p2 GABA_A receptor subunits in the cerebellum. Compared with most other brain regions, this area contains higher levels of p subunits (Boue-Grabot et al., 1998) and is also important for motor coordination. The ratios (KI/WT) of p1 and p2 mRNA levels were 0.98 and 0.93, respectively, and showed no statistical difference from 1.0, indicating that the p1 mutation does not alter p1 or p2 mRNA abundance in cerebellum.
female mice were combined because no sex differences were found.

Duration of LORR after ketamine (175 mg/kg, i.p.) injection in male and female mice.

The second transmembrane helix of r1 promotes recovery from acute motor incoordination likely by promoting the development of tolerance to ethanol (but not clearance of ethanol). r1 KO mice developed higher AFT to ethanol-induced motor impairment than WT mice, as previously observed in global r1 KO mice. In contrast, lower AFT to ethanol-induced motor ataxia was found in KI mice harboring ethanol-insensitive r1 GABA_A receptor subunits (Werner et al., 2009). Thus, specific subtypes of GABA_A receptors may regulate acute tolerance to ethanol intoxication. It is somewhat surprising that both deletion of the r1 subunit (KO mice) and elimination of ethanol inhibition of p1 (KI mice) produced an increase in the development of tolerance. One might expect elimination of a site of ethanol action to reduce the drive for tolerance and that removal of function (KO) would produce opposite effects from removal of inhibition of function (KI). This paradox may reflect our lack of understanding of the role of r1 receptors in brain circuitry and function.

Male and female p1 KO mice did not differ from WT mice in ethanol consumption, CTA to ethanol, or the hypnotic effects of ethanol or ketamine. Because these effects of ethanol were altered in the KO mice, it is likely that the p1 subunit is important for these behaviors, not because ethanol is acting on the receptor to inhibit function but because of an intrinsic role of this receptor in neuronal inhibition. Alternatively, the phenotypes that are observed in KO mice could be due to compensatory changes in other ethanol targets that are unchanged in the KI mice.

Alcohol use disorder (AUD) has a strong genetic component (Kendler et al., 2011; Merikangas et al., 1998), and an individual's sensitivity and tolerance to alcohol are important factors in AUD risk. Sensitivity to an adverse effect of alcohol, such as ataxia and sedation, may influence the amount an individual consumes and predict future patterns of alcohol use. A classic study by (Schuckit, 1985) found that non-alcohol dependent men with a positive family history for alcoholism were significantly less sensitive to alcohol compared to those with a negative family history. A low level of response and positive family history were both found to be significant predictors of future alcohol problems (Schuckit, 1994), presumably because reduced sensitivity would allow individuals to consume larger quantities of alcohol before experiencing adverse effects such as ataxia. Reduced sensitivity to alcohol in humans, as in our mouse studies, may result from greater development of acute tolerance (Newlin and Thomson, 1991).

Our findings that genetic manipulations of p1 receptors regulate acute tolerance to the ataxic effects of ethanol may provide a
phenotypic explanation for the study showing that genes encoding p1/2 subunits are associated with alcohol dependence (Xuei et al., 2010). Although overall changes in ethanol consumption were not different in p1 mutant mice, with the exception of p1 KO male mice, (Blednov et al., 2014), it is important to note that changes in AFT to ethanol-induced motor impairment are not always accompanied by changes in ethanol intake in rodents (Erwin et al., 2000; Fritz et al., 2013, 2014; Shram et al., 2004; Wallace et al., 2007). Furthermore, in this study we only examined ethanol consumption using the continuous two-bottle free choice assay. Other tests of ethanol consumption may reveal differences that are not detected with this test, although we note that there were no changes in two other drinking tests (two-bottle choice intermittent and drinking-in-the-dark) in p1 KO mice (Blednov et al., 2014).

In conclusion, our collective studies using p1 mutant mice point to a key role for this GABA(A) receptor subunit in the central actions of ethanol and the development of acute tolerance. The Ki mice described here offer a new genetic model for future in vitro and in vivo studies of ethanol action and drug discovery. Considering the genetic association of p1/2 subunits with alcohol dependence in humans (Xuei et al., 2010), our findings that genetic manipulation of p1 produces increased acute tolerance to intoxication may explain how this receptor contributes to AUD risk.

Acknowledgements

The authors thank Carolyn Ferguson, Olga Ponomareva, and Courtney Bridges for expert technical assistance and Jody Mayfield for help writing and editing the manuscript and preparing figures. This research was supported by the National Institutes of Health grants AA006399 (RAH), AA013520 (YAB and RAH), AA010422 and AA020889 (GEH).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.neuropharm.2017.06.013.

References

genesis of Drosophila with the CRISPRiCas9 system. Cell Rep. 4, 220–228.
Blednov, Y.A., Borghese, C.M., McCracken, M.L., Benavidez, J.M., Geil, C.R., Oster
Blednov et al., 2014. GABA receptor subunit in the central actions of ethanol and the development of acute tolerance. The Ki mice described here offer a new genetic model for future in vitro and in vivo studies of ethanol action and drug discovery. Considering the genetic association of p1/2 subunits with alcohol dependence in humans (Xuei et al., 2010), our findings that genetic manipulation of p1 produces increased acute tolerance to intoxication may explain how this receptor contributes to AUD risk.

Acknowledgements

The authors thank Carolyn Ferguson, Olga Ponomareva, and Courtney Bridges for expert technical assistance and Jody Mayfield for help writing and editing the manuscript and preparing figures. This research was supported by the National Institutes of Health grants AA006399 (RAH), AA013520 (YAB and RAH), AA010422 and AA020889 (GEH).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.neuropharm.2017.06.013.

References

genesis of Drosophila with the CRISPRiCas9 system. Cell Rep. 4, 220–228.